Abstract

We proposed an improved polarization control method to reduce polarization-induced phase shift (PIPS) and polarization-induced fading (PIF) in a dual Mach–Zehnder interferometry (DMZI) disturbance sensing system. PIPS and PIF will seriously affect the positioning accuracy of the DMZI sensor. This polarization control method uses two PCs to control the state of polarization at the inputs of clockwise Mach–Zehnder interferometer and counter-clockwise Mach–Zehnder interferometer, respectively, based on chaotic particle swarm optimization algorithm, which has advantages of high speed and easy implementation. We experimentally demonstrated that the polarization method can overcome the effect of PIPS and PIF, improve the positioning accuracy of the DMZI sensor efficiently with positioning error of ±20 m after polarization control. Compared with the traditional polarization control method in DMZI based on the criterion of visibility, the positioning error of the sensor using our proposed method has been reduced at least an order of magnitude.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription