Abstract

The noise figures (NF) of near-infrared (near-IR) amorphous silicon (a-Si) and mid-infrared (mid-IR) crystalline silicon (c-Si) optical parametric amplifiers (OPA) are numerically investigated. The impact of nonlinear losses, i.e., two-photon absorption (TPA) and TPA-induced free carrier absorption (FCA), as well as Raman-effect-induced complex nonlinear coefficient are taken into account in a-Si OPAs. The amplified spontaneous emission (ASE) of Erbium-doped fiber amplifiers (EDFA) and the relative intensity noise (RIN) of the pump laser are considered as the dominant pump noises when simulating the pump transferred noise (PTN) of near-IR a-Si and mid-IR c-Si OPAs, respectively. It is shown that in typical near-IR a-Si OPAs, the NF is ∼5 dB on the Stokes side but increases sharply to above 10 dB at the gain edge on the anti-Stokes side. In high-gain mid-IR c-Si OPAs, the NF is dominated by the PTN and is well above 10 dB at the gain edge. These results indicate that both near-IR a-Si OPAs and mid-IR c-Si OPAs are promising alternatives to near-IR c-Si OPAs, but they both have limitations in broadband operation.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription