Abstract

We demonstrate that the electro-optic (EO) modulation response linearly decreases (dB scale) with respect to the modulating frequency, with an extremely small drop of less than 2 dB, up to a limit of 67 GHz, as measured by an optical component analyzer. The measured bandwidth of the EO response is wider than 67 GHz and was extrapolated to 120 GHz. This study demonstrates a new optimized broadband optical modulator with low half-wave voltage and low optical loss. The dielectric constant of each material in the modulator is accurately measured by comparing the electrical transmission and reflection parameters for the radio frequency (RF) high-speed coplanar electrode deposited on each layer with theoretically obtained values. The electrical transmission bandwidth for the optimized RF electrode is measured up to a limit of 110 GHz by a vector network analyzer and then extrapolated to a 6-dB bandwidth of 130 GHz based on the experimental parameters. The product of the half-wave voltage and electrode length is 1.8 V⋅cm for dual-drive operation. The in-device EO coefficient is 160 pm/V at 1.55 μm. The product of the half-wave voltage and loss is 10.8 V⋅dB.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .
  2. S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.
  3. N. Fenget al., “High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25 μm silicon-on-insulator waveguides,” Opt. Express, vol. 18, no. 8, pp. 7994–7999, 2010.
  4. H. Xuet al., “High-speed silicon modulator with band equalization,” Opt. Lett., vol. 39, no. 16, pp. 4839–4842, 2014.
  5. D. Petousiet al., “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2015, Art. no. .
  6. L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightw. Technol., vol. 32, no. 5, pp. 966–970, 2014.
  7. D. Thomsonet al., “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 234–236, 2012.
  8. H. Xuet al., “High-speed silicon modulator with band equalization,” Opt. Lett., vol. 39, no. 16, pp. 4839–4842, 2014.
  9. M. Ziebellet al., “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express, vol. 20, no. 10, pp. 10591–10596, 2012.
  10. I. Goykhman, B. Desiatov, S. Ben-Ezra, J. Shappir, and U. Levy, “Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator,” Opt. Express, vol. 21, no. 17, pp. 19518–19529, 2013.
  11. M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.
  12. Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.
  13. Y. Tang, J. Peters, and J. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express, vol. 20, no. 10, pp. 11529–11535, 2012.
  14. Y. Ogisoet al., “100 Gb/s and 2 V V InP Mach-Zehnder modulator with an n-i-p-n heterostructure,” Electron. Lett., vol. 52, no. 22, pp. 1866–1867, 2016.
  15. E. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82, 2000.
  16. A. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express, vol. 24, no. 14, pp. 15590–15595, 2016.
  17. J. Macarioet al., “Full spectrum millimeter-wave modulation,” Opt. Express, vol. 20, no. 21, pp. 23623–23629, 2012.
  18. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.
  19. T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.
  20. Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.
  21. C. Hoessbacheret al., “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1768, 2017.
  22. Y. Enamiet al., “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photon., vol. 1, no. 3, pp. 180–185, 2007.
  23. Y. Enamiet al., “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett., vol. 91, no. 9, 2007, Art. no. .
  24. Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.
  25. D. Chenet al., “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3335–3337, 1997.
  26. H. Huanget al., “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightw. Technol., vol. 30, no. 23, pp. 3647–3652, 2012.
  27. T. Baehr-Joneset al., “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express, vol. 20, no. 11, pp. 12014–12020, 2012.
  28. L. Alloattiet al., “100 GHz silicon-organic hybrid modulator,” Light-Sci. Appl., vol. 3, 2014, Art. no. .
  29. S. Koeberet al., “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light-Sci. Appl., vol. 4, 2015, Art. no. .
  30. Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .
  31. Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express, vol. 22, no. 24, pp. 30191–30199, 2014.
  32. D. Zhang and Y. Enami, “Simulation for optical response of high speed traveling wave electo-optic polymer/TiO2 multilayer slot waveguide modulators,” IEEE Photon. J., vol. 9, no. 3, 2017, Art. no. .
  33. Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.
  34. H. Lue, and T. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, no. 6, pp. 1640–1647, 2001.
  35. N. Dagli, “Wider bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Techn. vol. 47, no. 7, pp. 1151–1171, 1999.
  36. J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Conf. Opt. Fiber Commun., 2010, Paper OthU2.

2017 (2)

D. Zhang and Y. Enami, “Simulation for optical response of high speed traveling wave electo-optic polymer/TiO2 multilayer slot waveguide modulators,” IEEE Photon. J., vol. 9, no. 3, 2017, Art. no. .

C. Hoessbacheret al., “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1768, 2017.

2016 (3)

A. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express, vol. 24, no. 14, pp. 15590–15595, 2016.

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Y. Ogisoet al., “100 Gb/s and 2 V V InP Mach-Zehnder modulator with an n-i-p-n heterostructure,” Electron. Lett., vol. 52, no. 22, pp. 1866–1867, 2016.

2015 (2)

D. Petousiet al., “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2015, Art. no. .

S. Koeberet al., “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light-Sci. Appl., vol. 4, 2015, Art. no. .

2014 (6)

2013 (1)

2012 (7)

M. Ziebellet al., “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express, vol. 20, no. 10, pp. 10591–10596, 2012.

Y. Tang, J. Peters, and J. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express, vol. 20, no. 10, pp. 11529–11535, 2012.

T. Baehr-Joneset al., “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express, vol. 20, no. 11, pp. 12014–12020, 2012.

J. Macarioet al., “Full spectrum millimeter-wave modulation,” Opt. Express, vol. 20, no. 21, pp. 23623–23629, 2012.

D. Thomsonet al., “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 234–236, 2012.

H. Huanget al., “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightw. Technol., vol. 30, no. 23, pp. 3647–3652, 2012.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

2011 (1)

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

2010 (2)

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

N. Fenget al., “High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25 μm silicon-on-insulator waveguides,” Opt. Express, vol. 18, no. 8, pp. 7994–7999, 2010.

2007 (2)

Y. Enamiet al., “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photon., vol. 1, no. 3, pp. 180–185, 2007.

Y. Enamiet al., “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett., vol. 91, no. 9, 2007, Art. no. .

2003 (1)

Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.

2001 (2)

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

H. Lue, and T. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, no. 6, pp. 1640–1647, 2001.

2000 (1)

E. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82, 2000.

1999 (1)

N. Dagli, “Wider bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Techn. vol. 47, no. 7, pp. 1151–1171, 1999.

1998 (1)

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.

1997 (1)

D. Chenet al., “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3335–3337, 1997.

Abe, S.

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Alloatti, L.

L. Alloattiet al., “100 GHz silicon-organic hybrid modulator,” Light-Sci. Appl., vol. 3, 2014, Art. no. .

Baehr-Jones, T.

Ben-Ezra, S.

Bowers, J.

Chang, Y.

Chen, D.

D. Chenet al., “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3335–3337, 1997.

Dagli, N.

N. Dagli, “Wider bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Techn. vol. 47, no. 7, pp. 1151–1171, 1999.

Desiatov, B.

Ding, J.

L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightw. Technol., vol. 32, no. 5, pp. 966–970, 2014.

Enami, Y.

D. Zhang and Y. Enami, “Simulation for optical response of high speed traveling wave electo-optic polymer/TiO2 multilayer slot waveguide modulators,” IEEE Photon. J., vol. 9, no. 3, 2017, Art. no. .

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.

Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express, vol. 22, no. 24, pp. 30191–30199, 2014.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Y. Enamiet al., “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photon., vol. 1, no. 3, pp. 180–185, 2007.

Y. Enamiet al., “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett., vol. 91, no. 9, 2007, Art. no. .

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

Feng, N.

Goykhman, I.

Hara, H.

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Hoessbacher, C.

Huang, H.

H. Huanget al., “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightw. Technol., vol. 30, no. 23, pp. 3647–3652, 2012.

Izutsu, M.

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

Jen, A.

Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express, vol. 22, no. 24, pp. 30191–30199, 2014.

Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

Jen, A. K. Y.

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Jouane, Y.

Kawanishi, T.

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

Koeber, S.

S. Koeberet al., “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light-Sci. Appl., vol. 4, 2015, Art. no. .

Kogo, K.

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

Lentine, A.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

Levy, U.

Lue, H.

H. Lue, and T. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, no. 6, pp. 1640–1647, 2001.

Luo, J.

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.

Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express, vol. 22, no. 24, pp. 30191–30199, 2014.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

Macario, J.

Mallari, J.

J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Conf. Opt. Fiber Commun., 2010, Paper OthU2.

Masuda, S.

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

Masuda, Y.

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

Mercante, A.

Mitomi, O.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.

Miyazawa, H.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.

Murakowski, J.

Nakamura, H.

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Noguchi, K.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.

Ogiso, Y.

Y. Ogisoet al., “100 Gb/s and 2 V V InP Mach-Zehnder modulator with an n-i-p-n heterostructure,” Electron. Lett., vol. 52, no. 22, pp. 1866–1867, 2016.

Oikawa, S.

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

Peters, J.

Petousi, D.

D. Petousiet al., “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2015, Art. no. .

Prather, D.

Schneider, G.

Seki, A.

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

Shappir, J.

Shi, S. Y.

Shi, Y.

Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.

Shimizu, M.

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Shiota, K.

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

Tanaka, M.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Tang, Y.

Thomson, D.

D. Thomsonet al., “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 234–236, 2012.

Trotter, D.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

Tseng, T.

H. Lue, and T. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, no. 6, pp. 1640–1647, 2001.

Uekusa, K.

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Watts, M.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

Willner, A.

Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.

Wooten, E.

E. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82, 2000.

Xu, H.

Yan, L.

Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.

Yang, L.

L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightw. Technol., vol. 32, no. 5, pp. 966–970, 2014.

Yao, P.

Young, R.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

Yuan, B.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Zhang, D.

D. Zhang and Y. Enami, “Simulation for optical response of high speed traveling wave electo-optic polymer/TiO2 multilayer slot waveguide modulators,” IEEE Photon. J., vol. 9, no. 3, 2017, Art. no. .

Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.

Ziebell, M.

Zortman, W.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

Appl. Phys. Lett. (3)

Y. Enamiet al., “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett., vol. 91, no. 9, 2007, Art. no. .

D. Chenet al., “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3335–3337, 1997.

Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 2012, Art. no. .

Electron. Lett. (1)

Y. Ogisoet al., “100 Gb/s and 2 V V InP Mach-Zehnder modulator with an n-i-p-n heterostructure,” Electron. Lett., vol. 52, no. 22, pp. 1866–1867, 2016.

IEEE J. Sel. Topics Quantum Electron. (3)

E. Wootenet al., “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 69–82, 2000.

M. Watts, W. Zortman, D. Trotter, R. Young, and A. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 1, pp. 159–164, 2010.

D. Petousiet al., “Analysis of optical and electrical tradeoffs of traveling-wave depletion-type Si Mach-Zehnder modulators for high-speed operation,” IEEE J. Sel. Topics Quantum Electron., vol. 21, no. 4, 2015, Art. no. .

IEEE Photon. J. (1)

D. Zhang and Y. Enami, “Simulation for optical response of high speed traveling wave electo-optic polymer/TiO2 multilayer slot waveguide modulators,” IEEE Photon. J., vol. 9, no. 3, 2017, Art. no. .

IEEE Photon. Technol. Lett. (1)

D. Thomsonet al., “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett., vol. 24, no. 4, pp. 234–236, 2012.

IEEE Trans. Microw. Theory Techn. (1)

N. Dagli, “Wider bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microw. Theory Techn. vol. 47, no. 7, pp. 1151–1171, 1999.

IEEE Trans. Ultrason., Ferroelectr., Freq. Control (1)

H. Lue, and T. Tseng, “Application of on-wafer TRL calibration on the measurement of microwave properties of Ba0.5Sr0.5TiO3 thin films,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 48, no. 6, pp. 1640–1647, 2001.

J. Appl. Phys. (1)

S. Masuda, A. Seki, K. Shiota, H. Hara, and Y. Masuda, “Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators,” J. Appl. Phys., vol. 109, no. 12, 2011, Art. no. .

J. Lightw. Technol. (4)

L. Yang and J. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightw. Technol., vol. 32, no. 5, pp. 966–970, 2014.

H. Huanget al., “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightw. Technol., vol. 30, no. 23, pp. 3647–3652, 2012.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti: LiNbO3 optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619, 1998.

Y. Shi, L. Yan, and A. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367, 2003.

Light-Sci. Appl. (2)

L. Alloattiet al., “100 GHz silicon-organic hybrid modulator,” Light-Sci. Appl., vol. 3, 2014, Art. no. .

S. Koeberet al., “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light-Sci. Appl., vol. 4, 2015, Art. no. .

Nature Photon. (1)

Y. Enamiet al., “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nature Photon., vol. 1, no. 3, pp. 180–185, 2007.

Opt. Commun. (2)

T. Kawanishi, K. Kogo, S. Oikawa, and M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators,” Opt. Commun., vol. 195, nos. 5–6, pp. 399–404, 2001.

Y. Enami, H. Nakamura, J. Luo, and A. K. Y. Jen, “Analysis of efficiently poled electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Commun., vol. 362, pp. 77–80, 2016.

Opt. Express (10)

Y. Tang, J. Peters, and J. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express, vol. 20, no. 10, pp. 11529–11535, 2012.

M. Ziebellet al., “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express, vol. 20, no. 10, pp. 10591–10596, 2012.

I. Goykhman, B. Desiatov, S. Ben-Ezra, J. Shappir, and U. Levy, “Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator,” Opt. Express, vol. 21, no. 17, pp. 19518–19529, 2013.

A. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express, vol. 24, no. 14, pp. 15590–15595, 2016.

J. Macarioet al., “Full spectrum millimeter-wave modulation,” Opt. Express, vol. 20, no. 21, pp. 23623–23629, 2012.

N. Fenget al., “High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25 μm silicon-on-insulator waveguides,” Opt. Express, vol. 18, no. 8, pp. 7994–7999, 2010.

C. Hoessbacheret al., “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ,” Opt. Express, vol. 25, no. 3, pp. 1762–1768, 2017.

T. Baehr-Joneset al., “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express, vol. 20, no. 11, pp. 12014–12020, 2012.

Y. Jouane, Y. Chang, D. Zhang, J. Luo, A. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Opt. Express, vol. 22, no. 22, pp. 27725–27732, 2014.

Y. Enami, Y. Jouane, J. Luo, and A. Jen, “Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators,” Opt. Express, vol. 22, no. 24, pp. 30191–30199, 2014.

Opt. Lett. (2)

Other (3)

S. Abe, S. Masuda, K. Uekusa, H. hara, and M. Shimizu, “Photonics integrated circuit uisng lanthanum-modified lead zirconate titanate thin film,” in Proc. Conf. Opt. Fiber Commun., 2017, Paper Th3l.2.

Y. Enami, A. Seki, S. Masuda, J. Luo, and A. Jen, “Ultra-broadband Mach-Zehnder hybrid electro-optic polymer/sol-gel silica waveguide modulators,” in Proc. Conf. Lasers Electro-Opt., 2017, Paper SM2O.5.

J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Conf. Opt. Fiber Commun., 2010, Paper OthU2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.