Abstract

A time-dependent numerical model of a dysprosium-doped ZBLAN glass fiber is developed in order to design a pulsed laser emitting at about 3 $\mu \text{m}$ wavelength, by employing an in-band pumping scheme. A number of design parameters are changed to optimize the laser performance. Gain-switching regime with an output signal peak power close to 59 W and a full width at half maximum pulse duration shorter than 184 ns is simulated for a fiber with dopant concentration of 2000 ppm, by employing a pulsed input pump with a peak power of 5 W and a repetition rate of 100 kHz at the wavelength of 2.8 $\mu \text{m}$ . These characteristics are very promising and theoretically predict the feasibility of a laser, which can find application in many areas such as chemical, biological, and environmental monitoring.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.
  2. D. D. Hudson, “Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol., vol. 20, no. 6, pp. 631–641,  2014.
  3. F. Stareckiet al., “Mid-IR optical sensor for CO$_{2}$ detection based on fluorescence absorbance of Dy$^{3+}$: Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ fibers,” Sens. Actuator B, Chem., vol. 207, Part A, no. 5, pp. 518–525,  2015.
  4. M. C. Falconiet al., “Design of an efficient pumping scheme for mid-IR Dy$^{3+}$:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.
  5. L. Sojkaet al., “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr$^{3+}$ doped chalcogenide fibre,” Opt. Quant. Electron., vol. 49, no. 1,  2016, Art. no. .
  6. M. C. Falconiet al., “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.
  7. G. Palmaet al., “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu \text{m}$,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.
  8. L. Sojkaet al., “Mid-infrared emission in Tb$^{3+}$-doped selenide glass fiber,” J. Opt. Soc. Amer. B, vol. 34, no. 3, pp. A70–A79,  2017.
  9. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.
  10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ∼2 $\mu \text{m}$ Tm$^{3+}$-doped tellurite fiber laser,” Opt. Lett., vol. 33, no. 4, pp. 402–404,  2008.
  11. L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.
  12. R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.
  13. H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.
  14. R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.
  15. E. Poppe and B. Srinivasan, and R. K. Jain, “980 nm diode-pumped continuous wave mid-IR (2.7 $\mu \text{m}$) fibre laser,” Electron. Lett., vol. 34, no. 24, pp. 2331–2333,  1998.
  16. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 $\mu \text{m}$,” Opt. Lett., vol. 29, no. 4, pp. 334–336,  2004.
  17. K. J. Linden, “Fiber laser with 1.2-W CW-output power at 2712 nm,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 401–403,  2004.
  18. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett., vol. 32, no. 16, pp. 2381–2383,  2007.
  19. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88 $\mu \text{m}$,” Opt. Lett., vol. 35, no. 23, pp. 3943–3945,  2010.
  20. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 $\mu \text{m}$,” Opt. Lett., vol. 36, no. 7, pp. 1104–1106,  2011.
  21. S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.
  22. R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.
  23. J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.
  24. J. Liuet al., “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 3, pp. 1–7,  2018.
  25. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica, vol. 3, no. 12, pp. 1373–1376,  2016.
  26. J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.
  27. S. Yanet al., “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express, vol. 23, no. 20, pp. 25675–25687,  2015.
  28. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er$^{3+}$-doped ZBLAN fiber laser around 2.8 $\mu \text{m}$,” Opt. Express, vol. 25, no. 8, pp. 8816–8827,  2017.
  29. M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett., vol. 41, no. 10, pp. 2173–2176,  2016.
  30. M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett., vol. 41, no. 19, pp. 4496–4498,  2016.
  31. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 $\mu \text{m}$ to 3.4 $\mu \text{m}$, pumped at 1.7 $\mu \text{m}$,” Opt. Lett., vol. 43, no. 5, pp. 971–974,  2018.
  32. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 $\mu \text{m}$ with 73% slope efficiency,” Opt. Lett., vol. 43, no. 7, pp. 1471–1474,  2018.
  33. J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.
  34. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia, PA, USA: SIAM, 2007.
  35. M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925,  2011.
  36. H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 $\mu \text{m}$,” Opt. Express, vol. 26, no. 1, pp. 63–79,  2018.

2018 (4)

2017 (4)

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er$^{3+}$-doped ZBLAN fiber laser around 2.8 $\mu \text{m}$,” Opt. Express, vol. 25, no. 8, pp. 8816–8827,  2017.

M. C. Falconiet al., “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

G. Palmaet al., “Design of praseodymium-doped chalcogenide micro-disk emitting at 4.7 $\mu \text{m}$,” Opt. Express, vol. 25, no. 6, pp. 7014–7030,  2017.

L. Sojkaet al., “Mid-infrared emission in Tb$^{3+}$-doped selenide glass fiber,” J. Opt. Soc. Amer. B, vol. 34, no. 3, pp. A70–A79,  2017.

2016 (6)

M. C. Falconiet al., “Design of an efficient pumping scheme for mid-IR Dy$^{3+}$:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

L. Sojkaet al., “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr$^{3+}$ doped chalcogenide fibre,” Opt. Quant. Electron., vol. 49, no. 1,  2016, Art. no. .

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett., vol. 41, no. 10, pp. 2173–2176,  2016.

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett., vol. 41, no. 19, pp. 4496–4498,  2016.

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica, vol. 3, no. 12, pp. 1373–1376,  2016.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.

2015 (2)

S. Yanet al., “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express, vol. 23, no. 20, pp. 25675–25687,  2015.

F. Stareckiet al., “Mid-IR optical sensor for CO$_{2}$ detection based on fluorescence absorbance of Dy$^{3+}$: Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ fibers,” Sens. Actuator B, Chem., vol. 207, Part A, no. 5, pp. 518–525,  2015.

2014 (3)

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

D. D. Hudson, “Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol., vol. 20, no. 6, pp. 631–641,  2014.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

2012 (1)

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

2011 (4)

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 $\mu \text{m}$,” Opt. Lett., vol. 36, no. 7, pp. 1104–1106,  2011.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925,  2011.

2010 (1)

2008 (2)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ∼2 $\mu \text{m}$ Tm$^{3+}$-doped tellurite fiber laser,” Opt. Lett., vol. 33, no. 4, pp. 402–404,  2008.

2007 (1)

2004 (3)

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 $\mu \text{m}$,” Opt. Lett., vol. 29, no. 4, pp. 334–336,  2004.

K. J. Linden, “Fiber laser with 1.2-W CW-output power at 2712 nm,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 401–403,  2004.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.

1998 (1)

E. Poppe and B. Srinivasan, and R. K. Jain, “980 nm diode-pumped continuous wave mid-IR (2.7 $\mu \text{m}$) fibre laser,” Electron. Lett., vol. 34, no. 24, pp. 2331–2333,  1998.

1991 (1)

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

1990 (2)

R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

Aggarwal, I. D.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

Allen, R.

R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.

Androz, G.

Antipov, S.

Bernier, M.

Bharathan, G.

Binks, D.

Caron, N.

Carter, S. F.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

Copic, M.

Davey, S. T.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

Esterowitz, L.

R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.

Falconi, M. C.

M. C. Falconiet al., “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

M. C. Falconiet al., “Design of an efficient pumping scheme for mid-IR Dy$^{3+}$:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

Faucher, D.

Fuerbach, A.

Ginther, R. J.

R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.

Gomes, L.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

Gorjan, M.

Hai, Y.

Hashida, M.

Hirokane, M.

Huang, L.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.

Hudson, D. D.

Jackson, S. D.

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 $\mu \text{m}$ with 73% slope efficiency,” Opt. Lett., vol. 43, no. 7, pp. 1471–1474,  2018.

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 $\mu \text{m}$ to 3.4 $\mu \text{m}$, pumped at 1.7 $\mu \text{m}$,” Opt. Lett., vol. 43, no. 5, pp. 971–974,  2018.

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett., vol. 41, no. 19, pp. 4496–4498,  2016.

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett., vol. 41, no. 10, pp. 2173–2176,  2016.

S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica, vol. 3, no. 12, pp. 1373–1376,  2016.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 $\mu \text{m}$,” Opt. Lett., vol. 29, no. 4, pp. 334–336,  2004.

Jain, B. Srinivasan, and R. K.

E. Poppe and B. Srinivasan, and R. K. Jain, “980 nm diode-pumped continuous wave mid-IR (2.7 $\mu \text{m}$) fibre laser,” Electron. Lett., vol. 34, no. 24, pp. 2331–2333,  1998.

Jain, R.

Jha, A.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ∼2 $\mu \text{m}$ Tm$^{3+}$-doped tellurite fiber laser,” Opt. Lett., vol. 33, no. 4, pp. 402–404,  2008.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.

Lai, X.

LeVeque, R. J.

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia, PA, USA: SIAM, 2007.

Li, H.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

Li, J.

H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 $\mu \text{m}$,” Opt. Express, vol. 26, no. 1, pp. 63–79,  2018.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

Li, R.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

Linden, K. J.

K. J. Linden, “Fiber laser with 1.2-W CW-output power at 2712 nm,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 401–403,  2004.

Liu, J.

J. Liuet al., “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 3, pp. 1–7,  2018.

Liu, Y.

Lousteau, J.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ∼2 $\mu \text{m}$ Tm$^{3+}$-doped tellurite fiber laser,” Opt. Lett., vol. 33, no. 4, pp. 402–404,  2008.

Luo, H.

Lyu, Y.

Majewski, M. R.

Marincek, M.

Masuda, I.

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

Milanese, D.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

Mura, E.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

Murakami, M.

Palma, G.

Percival, R. M.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

Petkovsek, R.

Pollnau, M.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.

Poppe, E.

E. Poppe and B. Srinivasan, and R. K. Jain, “980 nm diode-pumped continuous wave mid-IR (2.7 $\mu \text{m}$) fibre laser,” Electron. Lett., vol. 34, no. 24, pp. 2331–2333,  1998.

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

Richards, B.

Sakabe, S.

Sanghera, J. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

Shaw, L. B.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

Shen, S.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.

Shi, H.

Shimizu, S.

Shterengas, L.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

Sojka, L.

L. Sojkaet al., “Mid-infrared emission in Tb$^{3+}$-doped selenide glass fiber,” J. Opt. Soc. Amer. B, vol. 34, no. 3, pp. A70–A79,  2017.

L. Sojkaet al., “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr$^{3+}$ doped chalcogenide fibre,” Opt. Quant. Electron., vol. 49, no. 1,  2016, Art. no. .

Stallard, W. A.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

Starecki, F.

F. Stareckiet al., “Mid-IR optical sensor for CO$_{2}$ detection based on fluorescence absorbance of Dy$^{3+}$: Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ fibers,” Sens. Actuator B, Chem., vol. 207, Part A, no. 5, pp. 518–525,  2015.

Szebesta, D.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

Tang, Y.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

Tokita, S.

Toratani, H.

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

Tsang, Y.

Vallee, R.

Wang, L.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.

Wei, C.

Woodward, R. I.

Xie, J.

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.

Xu, J.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

Yamashita, T.

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

Yan, S.

Yanagita, H.

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

Yang, J.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

Zhang, H.

Zhang, R.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

Zhu, X.

Appl. Phys. Lett. (1)

R. Allen, L. Esterowitz, and R. J. Ginther, “Diode-pumped single-mode fluorozirconate fiber laser from the $^{4}$I$_{11/2} \rightarrow ^{4}$I$_{13/2}$ transition in erbium,” Appl. Phys. Lett., vol. 56, no. 17, pp. 1635–1637, 1990.

Electron. Lett. (4)

H. Yanagita, I. Masuda, T. Yamashita, and H. Toratani, “Diode laser pumped Er$^{3+}$ fibre laser operation between 2.7-2.8 $\mu \text{m}$,” Electron. Lett., vol. 26, no. 22, pp. 1836–1838,  1990.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fibre laser broadly tunable from 2.25 to 2.5 $\mu \text{m}$,” Electron. Lett., vol. 27, no. 21, pp. 1912–1913,  1991.

E. Poppe and B. Srinivasan, and R. K. Jain, “980 nm diode-pumped continuous wave mid-IR (2.7 $\mu \text{m}$) fibre laser,” Electron. Lett., vol. 34, no. 24, pp. 2331–2333,  1998.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fibre laser diode pumped at 1.94 $\mu \text{m}$,” Electron. Lett., vol. 47, no. 19, pp. 1089–1090,  2011.

IEEE J. Quantum Electron. (2)

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron., vol. 47, no. 4, pp. 471–478,  2011.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron., vol. 48, no. 12, pp. 1560–1567,  2012.

IEEE J. Sel. Topics Quantum Electron. (1)

J. Liuet al., “Widely wavelength-tunable mid-infrared fluoride fiber lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 3, pp. 1–7,  2018.

IEEE Photon. Technol. Lett. (4)

J. Li, L. Wang, H. Luo, J. Xie, and Y. Liu, “High power cascaded erbium doped fluoride fiber laser at room temperature,” IEEE Photon. Technol. Lett., vol. 28, no. 6, pp. 673–676,  2016.

K. J. Linden, “Fiber laser with 1.2-W CW-output power at 2712 nm,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 401–403,  2004.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 $\mu \text{m}$,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125,  2008.

M. C. Falconiet al., “Design of an efficient pumping scheme for mid-IR Dy$^{3+}$:Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987,  2016.

J. Lightw. Technol. (1)

M. C. Falconiet al., “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightw. Technol., vol. 35, no. 2, pp. 265–273,  2017.

J. Non-Cryst. Solids (1)

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm$^{3+}$-Yb$^{3+}$ co-doped tellurite glasses,” J. Non-Cryst. Solids, vol. 345-346, pp. 349–353,  2004.

J. Opt. Soc. Amer. B (3)

L. Sojkaet al., “Mid-infrared emission in Tb$^{3+}$-doped selenide glass fiber,” J. Opt. Soc. Amer. B, vol. 34, no. 3, pp. A70–A79,  2017.

L. Gomes, J. Lousteau, D. Milanese, E. Mura, and S. D. Jackson, “Spectroscopy of mid-infrared (2.9 $\mu \text{m}$) fluorescence and energy transfer in Dy$^{3+}$-doped tellurite glasses,” J. Opt. Soc. Amer. B, vol. 31, no. 3, pp. 429–435,  2014.

J. Yang, H. Li, Y. Tang, and J. Xu, “Temporal characteristics of in-band-pumped gain-switched thulium-doped fiber lasers,” J. Opt. Soc. Amer. B, vol. 31, no. 1, pp. 80–86,  2014.

Opt. Express (4)

Opt. Fiber Technol. (1)

D. D. Hudson, “Short pulse generation in mid-IR fiber lasers,” Opt. Fiber Technol., vol. 20, no. 6, pp. 631–641,  2014.

Opt. Lett. (10)

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett., vol. 41, no. 10, pp. 2173–2176,  2016.

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett., vol. 41, no. 19, pp. 4496–4498,  2016.

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 $\mu \text{m}$,” Opt. Lett., vol. 29, no. 4, pp. 334–336,  2004.

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett., vol. 32, no. 16, pp. 2381–2383,  2007.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient ∼2 $\mu \text{m}$ Tm$^{3+}$-doped tellurite fiber laser,” Opt. Lett., vol. 33, no. 4, pp. 402–404,  2008.

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88 $\mu \text{m}$,” Opt. Lett., vol. 35, no. 23, pp. 3943–3945,  2010.

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 $\mu \text{m}$,” Opt. Lett., vol. 36, no. 7, pp. 1104–1106,  2011.

M. Gorjan, R. Petkovsek, M. Marincek, and M. Copic, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett., vol. 36, no. 10, pp. 1923–1925,  2011.

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 $\mu \text{m}$ to 3.4 $\mu \text{m}$, pumped at 1.7 $\mu \text{m}$,” Opt. Lett., vol. 43, no. 5, pp. 971–974,  2018.

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 $\mu \text{m}$ with 73% slope efficiency,” Opt. Lett., vol. 43, no. 7, pp. 1471–1474,  2018.

Opt. Quant. Electron. (1)

L. Sojkaet al., “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr$^{3+}$ doped chalcogenide fibre,” Opt. Quant. Electron., vol. 49, no. 1,  2016, Art. no. .

Optica (1)

Sens. Actuator B, Chem. (1)

F. Stareckiet al., “Mid-IR optical sensor for CO$_{2}$ detection based on fluorescence absorbance of Dy$^{3+}$: Ga$_{5}$Ge$_{20}$Sb$_{10}$S$_{65}$ fibers,” Sens. Actuator B, Chem., vol. 207, Part A, no. 5, pp. 518–525,  2015.

Other (1)

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Philadelphia, PA, USA: SIAM, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.