Abstract

Given the escalation of demand for high-speed data interconnection, both between users and datacenters, high-capacity optical networks need a boost in capacity, flexibility, and efficiency. To stand up for those problems, the network reconfigurability is a key feature in a saturated and power hungry network operating scenario. In this paper, a reconfigurable optical node, using a commercial integrated photonics foundry, was conceived, fabricated, and tested. A novel application of automatic control of complex optical circuits involving locking and tuning of microring resonators is presented. The technique exploits a channel labeling strategy to identify a single optical channel amid a dense wavelength division multiplexing comb. The fabricated filter array provided add–drop ports with hitless channel reconfiguration and telecom graded specifications as 20 dB of in-band isolation, 40 GHz of channel bandwidth in a microring filter with 1 THz of free spectral range.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription