Abstract

We propose a novel method to assess physical layer potentialities of core optical networks aimed at finding solutions that better exploit the installed equipment. We focus on the use of flexible-rate transponders for the implementation of the elastic paradigm on the state-of-the-art dense wavelength-division-multiplexed fixed-grid network scenarios. We make use of the waveplane-based routing and wavelength assignment algorithm presented in Dai et al. [J. Lightwave Technol. , vol.  33, p. 3815, 2015 [CrossRef]  ] to implement a progressive statistical loading of the analyzed network topology, and perform a Monte Carlo analysis delivering a statistical characterization of the average bit rate per lightpath together with the assessment of network blocking. The proposed method allows for the identification of criticalities in terms of link congestion and lightpath quality of transmission, addressing solutions by identifying network bottlenecks. We apply the proposed method to a large pan-European network topology comparing two different transmission techniques for the implementations of flexible-rate transponders: pure PM-m-QAM versus hybrid modulation formats. Over this realistic network example, besides displaying the overall statistics for the average bit rate per lightpath, we show statistics for critical lightpaths and congested fiber links.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-objective Design of Survivable Flexible-Grid DWDM Networks

António Eira, João Santos, João Pedro, and João Pires
J. Opt. Commun. Netw. 6(3) 326-339 (2014)

Hybrid Modulation Formats Enabling Elastic Fixed-Grid Optical Networks

Fernando P. Guiomar, Rixin Li, Chris R. S. Fludger, Andrea Carena, and Vittorio Curri
J. Opt. Commun. Netw. 8(7) A92-A100 (2016)

400  Gb/s Real-Time Trial Using Rate-Adaptive Transponders for Next-Generation Flexible-Grid Networks [Invited]

Annachiara Pagano, Emilio Riccardi, Marco Bertolini, Vitaliano Farelli, and Tony Van De Velde
J. Opt. Commun. Netw. 7(1) A52-A58 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco visual networking index: Forecast and methodology, 2014–2019,” , 2014.
  2. G. Wellbrock and T. Xia, “How will optical transport deal with future network traffic growth?” in European Conf. on Optical Communication (ECOC), Sept.2014, pp. 1–3.
  3. X. Zhou, L. Nelson, and P. Magill, “Rate-adaptable optics for next generation long-haul transport networks,” IEEE Commun. Mag., vol.  51, no. 3, pp. 41–49, Mar.2013.
    [Crossref]
  4. V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.
  5. F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.
  6. H. Dai, Y. Li, and G. Shen, “Explore maximal potential capacity of WDM optical networks using time domain hybrid modulation technique,” J. Lightwave Technol., vol.  33, no. 18, pp. 3815–3826, Sept.2015.
    [Crossref]
  7. G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
    [Crossref]
  8. M. Cantono, R. Gaudino, and V. Curri, “Data-rate figure of merit for physical layer in fixed-grid reconfigurable optical networks,” in Optical Fiber Communication Conf., Anaheim, CA, 2016, paper Tu3F.3.
  9. P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.
  10. R. Pastorelli, G. Bosco, S. Piciaccia, and F. Forghieri, “Network planning strategies for next-generation flexible optical networks,” J. Opt. Commun. Netw., vol.  7, no. 3, pp. A511–A525, Mar.2015.
    [Crossref]
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
    [Crossref]
  12. V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
    [Crossref]
  13. L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.
  14. P. Wright, A. Lord, and S. Nicholas, “Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, CA, Mar.2012, pp. 1–3.
  15. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
    [Crossref]
  16. A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio, “Modeling nonlinearity in coherent transmissions with dominant intrachannel-four-wave-mixing,” Opt. Express, vol.  20, no. 7, pp. 7777–7791, Mar.2012.
    [Crossref]
  17. A. Mecozzi and R. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol., vol.  30, no. 12, pp. 2011–2024, June2012.
    [Crossref]
  18. M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 2016–2019, Nov.2012.
    [Crossref]
  19. P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightwave Technol., vol.  31, no. 8, pp. 1273–1282, Apr.2013.
    [Crossref]
  20. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol.  21, no. 22, pp. 25685–25699, Nov.2013.
    [Crossref]
  21. P. Serena and A. Bononi, “An alternative approach to the Gaussian noise model and its system implications,” J. Lightwave Technol., vol.  31, no. 22, pp. 3489–3499, Nov.2013.
    [Crossref]
  22. M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol., vol.  31, no. 23, pp. 3839–3852, Dec.2013.
    [Crossref]
  23. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol.  22, no. 12, pp. 14199–14211, June2014.
    [Crossref]
  24. P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb.2008, pp. 1–3.
  25. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, no. 11, pp. B58–B67, Nov.2012.
    [Crossref]
  26. A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.
  27. IDEALIST [Online]. Available: http://www.ict-idealist.eu/ .
  28. M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.
  29. D. J. Ives, P. Bayvel, and S. J. Savory, “Assessment of options for utilizing SNR margin to increase network data throughput,” in Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, Mar.2015, pp. 1–3.
  30. V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links supporting NYWDM transmission,” J. Lightwave Technol., vol.  34, no. 2, pp. 554–565, 2016.
    [Crossref]

2016 (1)

2015 (3)

2014 (2)

2013 (5)

2012 (5)

2001 (1)

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

Arduino, A.

Bayvel, P.

D. J. Ives, P. Bayvel, and S. J. Savory, “Assessment of options for utilizing SNR margin to increase network data throughput,” in Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, Mar.2015, pp. 1–3.

Bononi, A.

Bosco, G.

Bose, S.

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

Cantono, M.

M. Cantono, R. Gaudino, and V. Curri, “Data-rate figure of merit for physical layer in fixed-grid reconfigurable optical networks,” in Optical Fiber Communication Conf., Anaheim, CA, 2016, paper Tu3F.3.

Carena, A.

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links supporting NYWDM transmission,” J. Lightwave Technol., vol.  34, no. 2, pp. 554–565, 2016.
[Crossref]

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

Chai, T.

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

Cheng, T.

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

Cigliutti, R.

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

Collings, B.

P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb.2008, pp. 1–3.

Curri, V.

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links supporting NYWDM transmission,” J. Lightwave Technol., vol.  34, no. 2, pp. 554–565, 2016.
[Crossref]

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
[Crossref]

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

M. Cantono, R. Gaudino, and V. Curri, “Data-rate figure of merit for physical layer in fixed-grid reconfigurable optical networks,” in Optical Fiber Communication Conf., Anaheim, CA, 2016, paper Tu3F.3.

Dai, H.

Dar, R.

Devarajan, A.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Elschner, R.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Essiambre, R.

Feder, M.

Fludger, C. R.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

Fludger, C. R. S.

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

Forestieri, E.

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol., vol.  31, no. 23, pp. 3839–3852, Dec.2013.
[Crossref]

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 2016–2019, Nov.2012.
[Crossref]

Forghieri, F.

R. Pastorelli, G. Bosco, S. Piciaccia, and F. Forghieri, “Network planning strategies for next-generation flexible optical networks,” J. Opt. Commun. Netw., vol.  7, no. 3, pp. A511–A525, Mar.2015.
[Crossref]

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
[Crossref]

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

Frey, F.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Gao, L.

Gaudino, R.

M. Cantono, R. Gaudino, and V. Curri, “Data-rate figure of merit for physical layer in fixed-grid reconfigurable optical networks,” in Optical Fiber Communication Conf., Anaheim, CA, 2016, paper Tu3F.3.

Gowrishankar, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Grellier, E.

Guiomar, F. P.

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

Ives, D. J.

D. J. Ives, P. Bayvel, and S. J. Savory, “Assessment of options for utilizing SNR margin to increase network data throughput,” in Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, Mar.2015, pp. 1–3.

Jiang, Y.

Johannisson, P.

P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightwave Technol., vol.  31, no. 8, pp. 1273–1282, Apr.2013.
[Crossref]

Johnson, R.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Karlsson, M.

P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightwave Technol., vol.  31, no. 8, pp. 1273–1282, Apr.2013.
[Crossref]

Kishore, B.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Kupfer, T.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

Li, R.

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

Li, Y.

Lord, A.

P. Wright, A. Lord, and S. Nicholas, “Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, CA, Mar.2012, pp. 1–3.

Lu, C.

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

Lu, W.

L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.

Magill, P.

X. Zhou, L. Nelson, and P. Magill, “Rate-adaptable optics for next generation long-haul transport networks,” IEEE Commun. Mag., vol.  51, no. 3, pp. 41–49, Mar.2013.
[Crossref]

Mecozzi, A.

Napoli, A.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Nelson, L.

X. Zhou, L. Nelson, and P. Magill, “Rate-adaptable optics for next generation long-haul transport networks,” IEEE Commun. Mag., vol.  51, no. 3, pp. 41–49, Mar.2013.
[Crossref]

Nespola, A.

Nicholas, S.

P. Wright, A. Lord, and S. Nicholas, “Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, CA, Mar.2012, pp. 1–3.

Nölle, M.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Pastorelli, R.

R. Pastorelli, G. Bosco, S. Piciaccia, and F. Forghieri, “Network planning strategies for next-generation flexible optical networks,” J. Opt. Commun. Netw., vol.  7, no. 3, pp. A511–A525, Mar.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

Peng, L.

Piciaccia, S.

R. Pastorelli, G. Bosco, S. Piciaccia, and F. Forghieri, “Network planning strategies for next-generation flexible optical networks,” J. Opt. Commun. Netw., vol.  7, no. 3, pp. A511–A525, Mar.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

Poggiolini, P.

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

Prasanna, G.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Prati, G.

Roorda, P.

P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb.2008, pp. 1–3.

Rossi, N.

Sandesha, K.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Savory, S. J.

D. J. Ives, P. Bayvel, and S. J. Savory, “Assessment of options for utilizing SNR margin to increase network data throughput,” in Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, Mar.2015, pp. 1–3.

Schmidt-Langhorst, C.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Schubert, C.

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

Secondini, M.

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol., vol.  31, no. 23, pp. 3839–3852, Dec.2013.
[Crossref]

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 2016–2019, Nov.2012.
[Crossref]

Serena, P.

Shen, G.

Shtaif, M.

Vacondio, F.

Voruganti, P.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

Wellbrock, G.

G. Wellbrock and T. Xia, “How will optical transport deal with future network traffic growth?” in European Conf. on Optical Communication (ECOC), Sept.2014, pp. 1–3.

Wright, P.

P. Wright, A. Lord, and S. Nicholas, “Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, CA, Mar.2012, pp. 1–3.

Xia, T.

G. Wellbrock and T. Xia, “How will optical transport deal with future network traffic growth?” in European Conf. on Optical Communication (ECOC), Sept.2014, pp. 1–3.

Zhang, L.

L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.

Zhou, X.

X. Zhou, L. Nelson, and P. Magill, “Rate-adaptable optics for next generation long-haul transport networks,” IEEE Commun. Mag., vol.  51, no. 3, pp. 41–49, Mar.2013.
[Crossref]

L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.

Zhu, Z.

L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.

Comput. Commun. (1)

G. Shen, S. Bose, T. Cheng, C. Lu, and T. Chai, “Efficient heuristic algorithms for light-path routing and wavelength assignment in WDM networks under dynamically varying loads,” Comput. Commun., vol.  24, no. 3–4, pp. 364–373, 2001.
[Crossref]

IEEE Commun. Mag. (1)

X. Zhou, L. Nelson, and P. Magill, “Rate-adaptable optics for next generation long-haul transport networks,” IEEE Commun. Mag., vol.  51, no. 3, pp. 41–49, Mar.2013.
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 2016–2019, Nov.2012.
[Crossref]

J. Lightwave Technol. (9)

P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightwave Technol., vol.  31, no. 8, pp. 1273–1282, Apr.2013.
[Crossref]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol., vol.  30, no. 10, pp. 1524–1539, May2012.
[Crossref]

A. Mecozzi and R. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightwave Technol., vol.  30, no. 12, pp. 2011–2024, June2012.
[Crossref]

P. Serena and A. Bononi, “An alternative approach to the Gaussian noise model and its system implications,” J. Lightwave Technol., vol.  31, no. 22, pp. 3489–3499, Nov.2013.
[Crossref]

M. Secondini, E. Forestieri, and G. Prati, “Achievable information rate in nonlinear WDM fiber-optic systems with arbitrary modulation formats and dispersion maps,” J. Lightwave Technol., vol.  31, no. 23, pp. 3839–3852, Dec.2013.
[Crossref]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol., vol.  32, no. 4, pp. 694–721, Feb.2014.
[Crossref]

H. Dai, Y. Li, and G. Shen, “Explore maximal potential capacity of WDM optical networks using time domain hybrid modulation technique,” J. Lightwave Technol., vol.  33, no. 18, pp. 3815–3826, Sept.2015.
[Crossref]

V. Curri, A. Carena, A. Arduino, G. Bosco, P. Poggiolini, A. Nespola, and F. Forghieri, “Design strategies and merit of system parameters for uniform uncompensated links supporting Nyquist-WDM transmission,” J. Lightwave Technol., vol.  33, no. 18, pp. 3921–3932, Sept.2015.
[Crossref]

V. Curri and A. Carena, “Merit of Raman pumping in uniform and uncompensated links supporting NYWDM transmission,” J. Lightwave Technol., vol.  34, no. 2, pp. 554–565, 2016.
[Crossref]

J. Opt. Commun. Netw. (2)

Opt. Express (3)

Other (13)

P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, Feb.2008, pp. 1–3.

A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Bangalore, Jan.2010, pp. 1–10.

IDEALIST [Online]. Available: http://www.ict-idealist.eu/ .

M. Nölle, F. Frey, R. Elschner, C. Schmidt-Langhorst, A. Napoli, and C. Schubert, “Performance comparison of different 8QAM constellations for the use in flexible optical networks,” in Optical Fiber Communications Conf. and Exhibition (OFC), San Francisco, CA, Mar.2014, pp. 1–3.

D. J. Ives, P. Bayvel, and S. J. Savory, “Assessment of options for utilizing SNR margin to increase network data throughput,” in Optical Fiber Communications Conf. and Exhibition (OFC), Los Angeles, CA, Mar.2015, pp. 1–3.

V. Curri, A. Carena, P. Poggiolini, R. Cigliutti, F. Forghieri, C. R. Fludger, and T. Kupfer, “Time-division hybrid modulation formats: Tx operation strategies and countermeasures to nonlinear propagation,” in Optical Fiber Communication Conf., San Francisco, CA, 2014, paper Tu3A.2.

F. P. Guiomar, R. Li, A. Carena, C. R. S. Fludger, and V. Curri, “Hybrid modulation formats enabling elastic fixed-grid optical networks,” J. Opt. Commun. Netw., to be published.

Cisco, “Cisco visual networking index: Forecast and methodology, 2014–2019,” , 2014.

G. Wellbrock and T. Xia, “How will optical transport deal with future network traffic growth?” in European Conf. on Optical Communication (ECOC), Sept.2014, pp. 1–3.

M. Cantono, R. Gaudino, and V. Curri, “Data-rate figure of merit for physical layer in fixed-grid reconfigurable optical networks,” in Optical Fiber Communication Conf., Anaheim, CA, 2016, paper Tu3F.3.

P. Poggiolini, G. Bosco, A. Carena, R. Cigliutti, V. Curri, F. Forghieri, R. Pastorelli, and S. Piciaccia, “The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf., Anaheim, CA, 2013, paper OW1H.3.

L. Zhang, W. Lu, X. Zhou, and Z. Zhu, “Dynamic RMSA in spectrum-sliced elastic optical networks for high-throughput service provisioning,” in Int. Conf. on Computing, Networking and Communications (ICNC), San Diego, CA, Jan.2013, pp. 380–384.

P. Wright, A. Lord, and S. Nicholas, “Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, CA, Mar.2012, pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Flowchart of the SNAP algorithm.
Fig. 2.
Fig. 2. Pan-European network topology. Edge labels are the lengths of each fiber pair in km.
Fig. 3.
Fig. 3. Convergence of PDF of average bit rate per LP obtained considering TDHMF and k MAX = 1 .
Fig. 4.
Fig. 4. Convergence of the mean value (left axis, diamond markers) and standard deviation (right axis, circular markers) of average bit rate per LP obtained considering TDHMF and k MAX = 1 .
Fig. 5.
Fig. 5. R b , λ versus Δ P for the two considered modulation strategies. R b , λ has been averaged over N MC = 2500 Monte Carlo runs.
Fig. 6.
Fig. 6. Average R b , λ versus k MAX for TDHMF and PM-m-QAM modulation formats. LOGO strategy has been considered. The ± σ intervals are also shown.
Fig. 7.
Fig. 7. Average network blocking versus k MAX for TDHMF and PM-m-QAM modulation formats. LOGO strategy has been considered.
Fig. 8.
Fig. 8. Average percentage of used wavelengths for each link versus k MAX .
Fig. 9.
Fig. 9. Pictorial representation of link saturation in the network for k MAX = 1 . Ticker links correspond to more saturated links. Edge labels represent the link length in km.
Fig. 10.
Fig. 10. Mean percentage of used wavelengths averaged over all links versus k MAX for TDHMF and PM-m-QAM modulation formats. LOGO strategy has been considered.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R b , λ i = 1 N L , i j = 1 N L , i R b , j [ Gbps ] ,
Δ IOSNR = P ASE P ch + η P ch 2 ,
P ch , opt = P ASE 2 η 3 .
OSNR TOT = IOSNR TOT 1 = [ j = 1 N f ( N s , j Δ IOSNR , j ) ] 1 .
P ch = P ch , opt + Δ P [ dBm ] ,