Abstract

A numerical algorithm for the inverse blackbody radiation problem, which is the determination of the temperature distribution of a thermal radiator (TDTR) from its total radiated power spectrum (TRPS), is presented, based on the general theory of amplitude-phase retrieval. With application of this new algorithm, the ill-posed nature of the Fredholm equation of the first kind can be largely overcome and a convergent solution to high accuracy can be obtained. By incorporation of the hybrid input–output algorithm into our algorithm, the convergent process can be substantially expedited and the stagnation problem of the solution can be averted. From model calculations it is found that the new algorithm can also provide a robust reconstruction of the TDTR from the noise-corrupted data of the TRPS. Therefore the new algorithm may offer a useful approach to solving the ill-posed inverse problem.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation research on improved regularized solution of the inverse problem in spectral extinction measurements

Janusz Mroczka and Damian Szczuczyński
Appl. Opt. 51(11) 1715-1723 (2012)

Improved regularized solution of the inverse problem in turbidimetric measurements

Janusz Mroczka and Damian Szczuczyński
Appl. Opt. 49(24) 4591-4603 (2010)

Nonlinear approaches for the single-distance phase retrieval problem involving regularizations with sparsity constraints

Valentina Davidoiu, Bruno Sixou, Max Langer, and Francoise Peyrin
Appl. Opt. 52(17) 3977-3986 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription