Abstract

The light scattering and absorption of monolithic nanoporous Vycor glass during imbibition and drainage of wetting fluid such as water exhibit the following two optical hysteretic characteristics: one is the hysteretic response of the transient white turbidity in the visible (Vis) region and the other the hysteretic response of the absorbance peak in the near-infrared (NIR) region. We analyzed the effect of increasing and decreasing humidity in ambient air on the transmission in the glass with emphasis on its response to the humidity change, with or without holding at the maximum constant humidity, and its response to the humidity change up to various values of maximum attained humidity. We show that both the light scattering in the Vis region and the absorption in the NIR region are strongly affected by the duration and the maximum values of humidity, which implies that the amount of water in the pore space determines saturated and unsaturated responses of optical hystereses in both regions. We also show that the duration decreases the white turbidity while the immediate change of humidity from increasing to decreasing rather increases the turbidity. These facts verify that the nonequilibrium inhomogeneous distribution of the imbibed water in the pore space results in the optical inhomogeneity that causes the scattering, which is subsequently observed as the transient white turbidity, and that hysteresis loops of absorption are caused by the imbibed water in the pore space of Vycor glass. The existence of a threshold humidity of about 40% relative humidity (or corresponding pore-filling fraction of about 0.4) below which the two optical hystereses are suppressed and the fact that the maximum of optical turbidity occurs at about f=0.6 where the capillary condensation takes places imply that the appearance of a long-range capillary bridge between pores causes the transient white turbidity phenomenon.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. P. Huber, “Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media,” J. Phys. 27, 103102 (2015).
  2. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, 1982).
  3. T. M. Shaw, “Movement of a drying front in a porous material,” in Better Ceramics through Chemistry II, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., MRS Symposium Proceedings (Material Research Society, 1986), Vol. 73, pp. 215–223.
    [Crossref]
  4. T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
    [Crossref]
  5. S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
    [Crossref]
  6. A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).
  7. A. C. Mitropoulos, “Small-angle x-ray scattering studies of adsorption in Vycro glass,” J. Colloid Interface Sci. 336, 679–690 (2009).
    [Crossref]
  8. J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
    [Crossref]
  9. M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).
  10. J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).
  11. S. Ogawa and J. Nakamura, “Hysteretic characteristics of 1/λ4 scattering of light during adsorption and desorption of water in porous Vycor glass with nanopores,” J. Opt. Soc. Am. A 30, 2079–2089 (2013).
    [Crossref]
  12. S. Ogawa, “1/λ4 scattering of light during the drying process in porous Vycor glass with nano-sized pores,” J. Opt. Soc. Am. A 30, 154–159 (2013).
    [Crossref]
  13. D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
    [Crossref]
  14. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).
  15. J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
    [Crossref]
  16. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
    [Crossref]
  17. S. Ogawa and J. Nakamura, “Photospectroscopically observed pore-space correlations of a wetting fluid during the drying process in nanoporous Vycor glass,” J. Opt. Soc. Am. A 32, 533–537 (2015).
    [Crossref]
  18. E. C. Beder, C. D. Bass, and W. L. Shackleford, “Transmissivity and absorption of fused quartz between 0.22 μ and 3.5 μ from room temperature to 1500°C,” Appl. Opt. 10, 2263–2268 (1971).
    [Crossref]
  19. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  20. A. A. Evstrapov, N. A. Esikova, and T. V. Antropova, “Study of porous glasses by the methods of optical spectroscopy,” J. Opt. Technol. 75, 266–270 (2008).
    [Crossref]
  21. S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).
  22. P. R. Wakeling, “What is Vycor glass?” Appl. Opt. 18, 3208–3210 (1979).
  23. Y. C. Yortsos, “Probing pore structures by sorption isotherms and mercury porosimetry,” in Experimental Methods in the Physical Sciences (Academic, 1999), Vol. 35, Chap. 3, pp. 69–117.
  24. D. Avnir and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir 5, 1431–1433 (1989).
    [Crossref]
  25. V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
  26. V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
    [Crossref]
  27. D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

2015 (2)

P. Huber, “Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media,” J. Phys. 27, 103102 (2015).

S. Ogawa and J. Nakamura, “Photospectroscopically observed pore-space correlations of a wetting fluid during the drying process in nanoporous Vycor glass,” J. Opt. Soc. Am. A 32, 533–537 (2015).
[Crossref]

2013 (2)

2012 (1)

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

2009 (1)

A. C. Mitropoulos, “Small-angle x-ray scattering studies of adsorption in Vycro glass,” J. Colloid Interface Sci. 336, 679–690 (2009).
[Crossref]

2008 (1)

2005 (1)

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

2004 (1)

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

2003 (1)

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

1995 (2)

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

1994 (1)

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

1993 (1)

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

1992 (1)

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

1991 (2)

J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
[Crossref]

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

1989 (1)

D. Avnir and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir 5, 1431–1433 (1989).
[Crossref]

1987 (1)

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[Crossref]

1986 (1)

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[Crossref]

1979 (1)

1971 (1)

Abeles, B.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

Ackermann, R.

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

Antropova, T. V.

Avnir, D.

D. Avnir and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir 5, 1431–1433 (1989).
[Crossref]

Bass, C. D.

Beder, E. C.

Benham, M. J.

J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
[Crossref]

Deckman, H. W.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

Dotsenko, A. V.

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

Egelhaaf, S. U.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Esikova, N. A.

Evstrapov, A. A.

Fairclough, J. P. A.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

Gregg, S. J.

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, 1982).

Gruener, S.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Haynes, J. M.

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

Heenan, R.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

Herbolzheimer, E.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

Hermes, H. E.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Howe, L. D.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

Huang, J. S.

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

Huber, P.

P. Huber, “Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media,” J. Phys. 27, 103102 (2015).

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

Ibel, K.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

Jaroniec, M.

D. Avnir and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir 5, 1431–1433 (1989).
[Crossref]

Kanellopoulos, N. K.

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Khazova, M. V.

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

Kityk, A. V.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

Knorr, K.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

Kuchinskii, S. A.

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

Li, J. C.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
[Crossref]

Lin, M. Y.

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

Liu, J.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

Mitropoulos, A. C.

A. C. Mitropoulos, “Small-angle x-ray scattering studies of adsorption in Vycro glass,” J. Colloid Interface Sci. 336, 679–690 (2009).
[Crossref]

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

Nakamura, J.

Ogawa, S.

Page, J. H.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

Rabinovich, E. M.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[Crossref]

Richardson, R. M.

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

Rieger, H.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Ross, D. K.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
[Crossref]

Rouquerol, F.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Rouquerol, J.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Sadjadi, Z.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Shackleford, W. L.

Shaw, T. M.

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[Crossref]

T. M. Shaw, “Movement of a drying front in a porous material,” in Better Ceramics through Chemistry II, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., MRS Symposium Proceedings (Material Research Society, 1986), Vol. 73, pp. 215–223.
[Crossref]

Sing, K.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Sing, K. S. W.

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, 1982).

Soprunyuk, V. P.

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

Stasiewski, H. E.

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

Stefanopoulos, K. L.

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

Sukhanov, V. I.

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

Wakeling, P. R.

Wallacher, D.

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

Weitz, D. A.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

Wood, D. L.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[Crossref]

Yortsos, Y. C.

Y. C. Yortsos, “Probing pore structures by sorption isotherms and mercury porosimetry,” in Experimental Methods in the Physical Sciences (Academic, 1999), Vol. 35, Chap. 3, pp. 69–117.

Zhang, Q.

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

Appl. Opt. (2)

J. Appl. Crystallogr. (1)

J. C. Li, D. K. Ross, and M. J. Benham, “Small-angle neutron scattering studies of water and ice in porous Vycor glass,” J. Appl. Crystallogr. 24, 794–802 (1991).
[Crossref]

J. Colloid Interface Sci. (1)

A. C. Mitropoulos, “Small-angle x-ray scattering studies of adsorption in Vycro glass,” J. Colloid Interface Sci. 336, 679–690 (2009).
[Crossref]

J. Low Temp. Phys. (1)

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[Crossref]

J. Non-Cryst. Solids (1)

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Technol. (1)

J. Phys. (1)

P. Huber, “Soft matter in hard confinement: Phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media,” J. Phys. 27, 103102 (2015).

Langmuir (1)

D. Avnir and M. Jaroniec, “An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials,” Langmuir 5, 1431–1433 (1989).
[Crossref]

Opt. Spectrosc. (USSR) (1)

S. A. Kuchinskii, V. I. Sukhanov, M. V. Khazova, and A. V. Dotsenko, “Effective optical constants of porous glass,” Opt. Spectrosc. (USSR) 70, 85–88 (1991).

Phys. Rev. B (5)

V. P. Soprunyuk, D. Wallacher, P. Huber, K. Knorr, and A. V. Kityk, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).

A. C. Mitropoulos, J. M. Haynes, R. M. Richardson, and N. K. Kanellopoulos, “Characterization of porous glass by adsorption of dibromomethane in conjunction with small-angle x-ray scattering,” Phys. Rev. B 52, 10035–10042 (1995).

M. Y. Lin, B. Abeles, J. S. Huang, H. E. Stasiewski, and Q. Zhang, “Viscous flow and diffusion of liquids in microporous glasses,” Phys. Rev. B 46, 10701–10705 (1992).

J. C. Li, D. K. Ross, L. D. Howe, K. L. Stefanopoulos, J. P. A. Fairclough, R. Heenan, and K. Ibel, “Small-angle neutron-scattering studies of the fractal-like network formed during desorption and adsorption of water in porous materials,” Phys. Rev. B 49, 5911–5917 (1994).

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).

Phys. Rev. E (1)

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[Crossref]

Phys. Rev. Lett. (2)

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[Crossref]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Egelhaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. USA 109, 10245–10250 (2012).
[Crossref]

Other (5)

S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, 1982).

T. M. Shaw, “Movement of a drying front in a porous material,” in Better Ceramics through Chemistry II, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., MRS Symposium Proceedings (Material Research Society, 1986), Vol. 73, pp. 215–223.
[Crossref]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Y. C. Yortsos, “Probing pore structures by sorption isotherms and mercury porosimetry,” in Experimental Methods in the Physical Sciences (Academic, 1999), Vol. 35, Chap. 3, pp. 69–117.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Changes in the ambient relative humidity with or without the maximum humidity duration around a porous Vycor glass chip and the corresponding responses of the pore-filling fraction as a function of exposure time in minutes. The pore-filling fraction is estimated from the absorbance peak ( α 1900 ) at around a wavelength of 1900 nm, normalized by the initial maximum value measured immediately after the removal from the immersion container [12]. The ambient temperature was set to 25°C (298 K), and its measured value remained constant within ± 2 ° C while the humidity was changed.
Fig. 2.
Fig. 2. Responses of the pore-filling fraction of a porous Vycor glass chip to the relative humidity change between 18 and 81%RH around a Vycor glass chip with and without the maximum humidity duration. The duration makes it possible to imbibe more water vapor into the pores of porous glass, which can be observed as a vertical increase in the filling fraction as compared to that without the duration.
Fig. 3.
Fig. 3. Time evolution of slope β of turbidity ( τ ) versus 1 / λ 4 plots and of the filling fraction estimated from the absorbance peak ( α 1900 ) at a wavelength of around 1900 nm for the humidity change with or without the maximum humidity 1-h duration. The maximum humidity duration strongly affects slope β , which characterizes the turbidity responses with decreasing humidity. With the maximum humidity duration, slope β increases remarkably to its maximum with decreasing humidity, while without the maximum humidity duration it increases to a slightly larger value with decreasing humidity. However, the duration of the maximum humidity makes slope β relax or decrease, while the immediate change from increasing to decreasing humidity makes it further gradually increase to a rather lower peak.
Fig. 4.
Fig. 4. Responses of slope β in the 350–800 nm range to the humidity change with or without the duration of the maximum constant humidity as a function of the pore-filling fraction f . The duration makes the filling fraction exceed a threshold value of 0.6, so that its corresponding slope has the peak value of about 6 × 10 6 [ μm 3 ] . This causes the strong white turbidity with decreasing humidity, as compared to that with the immediate humidity change from increasing to decreasing.
Fig. 5.
Fig. 5. Scatterer’s effective radii ( r sca ) as a function of the pore-filling fraction f for increasing and decreasing humidity with and without the duration of the maximum constant humidity. For imbibition, the effective radius of the Rayleigh scatterer changes along almost the same line up to f = 0.65 . The radius, as a measure of the extent of the optical inhomogeneity that causes the scattering, becomes large when the humidity change pattern has the duration of the maximum constant humidity.
Fig. 6.
Fig. 6. Patterns of increasing, holding, and decreasing humidity around a porous Vycor glass sample with various values of maximum attained humidity (60, 65, 70, 75, 80, 85, and 90) at the same constant rate of ± 0.09 % RH / min in the humidity-controlled thermostatic chamber as a function of exposure time in minutes. The ambient temperature was set to 25°C (298 K), and its measured value remained constant within ± 2 ° C while the humidity was changed.
Fig. 7.
Fig. 7. Responses of the pore-filling fraction to the relative humidity change between 18% RH and various values of maximum attained humidity of 60%, 65%, 70%, 75%, 80%, 85%, and 90% RH with the 1-h duration of the corresponding constant maximum humidity. Adsorption branches of the filling fraction response change along almost the same line. The dashed line represents a calculation based on the FHH equation, Eq. (7), for B FHH = 0.2796 and ν = 0.4423 .
Fig. 8.
Fig. 8. Characteristic adsorption and desorption branches of the filling fraction of water on a porous Vycor glass as a function of the adsorption potential defined as A = R T ln ( 100 / H ) . The solid line represents a calculation based on the FHH equation for B FHH = 8.8927 and ν = 0.4423 . The value of B FHH is different from that of B FHH because the abscissa represents the adsorption potential including the factor R T , whereas the abscissa of Fig. 7 lacks that factor.
Fig. 9.
Fig. 9. Responses of slope β in the 350–800 nm range as a function of the pore-filling fraction f to the humidity change with various values of maximum attained humidity. The maximum attained humidity changes the corresponding values of the maximum fractional filling f of water in Vycor, which subsequently determines the corresponding slope β as another optical hysteresis of the transient white turbidity. The larger the maximum filling fraction, the higher the peak value of slope β at about f = 0.6 with decreasing filling fraction. Maximum filling fractions between 0.5 and 0.6 can create only weak white turbidity.
Fig. 10.
Fig. 10. Responses of the scatterer’s effective radius ( r sca ) as a function of the pore-filling fraction f to the humidity change with various values of maximum attained humidity. For all adsorptions, all effective radii of Rayleigh scatterers trace on the same universal line up to f = 0.65 , whereas the effective radii exhibit the larger peak at about f = 0.6 , the more the attained filling fraction exceeds the threshold at about f = 0.6 . The maximum filling fraction is determined by the corresponding maximum attained humidity. There exists another threshold at about f = 0.4 below which the radii are converged to a simple function of fraction f .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T ( λ 0 ) = I out ( λ 0 ) / I in ( λ 0 ) = ( 1 r ) 2 · exp ( τ · d ) ,
r = ( n a n p n a + n p ) 2 ,
τ = N · C sca = 24 π 3 V 1 2 λ 4 · N · ( m 2 1 m 2 + 2 ) 2 = β λ 4 ,
1 d ln ( 1 T ) = τ 2 d ln ( 1 r ) β λ 4 + C ,
0 = f · n w 2 n 1 2 ( f ) n w 2 + 2 n 1 2 ( f ) + ( 1 f ) · n a 2 n 1 2 ( f ) n a 2 + 2 n 1 2 ( f ) ,
n p 2 ( f ) = n 2 2 [ n 1 2 ( f ) + 2 n 2 2 + 2 ϕ ( n 1 2 ( f ) n 2 2 ) n 1 2 ( f ) + 2 n 2 2 ϕ ( n 1 2 ( f ) n 2 2 ) ] .
f adsorption ( A ) = B FHH · A ν ,

Metrics