Abstract

The formation process of the second-order interference pattern is studied experimentally in the photon counting regime by superposing two independent single-mode continuous-wave lasers. Two-photon interference based on the superposition principle in Feynman’s path integral theory is employed to interpret the experimental results. The second-order interference pattern of classical light can be formulated when, with high probability, there are only two photons in the interferometer at one time. The studies are helpful in understanding the second-order interference of classical light in the language of photons. The method and conclusions can be generalized to the third- and higher-order interference of light and interference of massive particles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The first- and second-order temporal interference between thermal and laser light

Jianbin Liu, Huaibin Zheng, Hui Chen, Yu Zhou, Fu-li Li, and Zhuo Xu
Opt. Express 23(9) 11868-11878 (2015)

Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer

Bin Bai, Jianbin Liu, Yu Zhou, Huaibin Zheng, Hui Chen, Songlin Zhang, Yuchen He, Fuli Li, and Zhuo Xu
J. Opt. Soc. Am. B 34(10) 2081-2088 (2017)

Experimental observation of three-photon superbunching with classical light in a linear system

Yu Zhou, Sheng Luo, Zhaohui Tang, Huaibin Zheng, Hui Chen, Jianbin Liu, Fu-li Li, and Zhuo Xu
J. Opt. Soc. Am. B 36(1) 96-100 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription