Abstract

The performances of different thermal ghost imaging (GI) algorithms are compared in an experiment of computational GI using a digital micromirror device. Here we present a rather different evaluation criterion named receiver operating characteristic (ROC) analysis that serves as the performance of merit for the quantitative comparison. A ROC curve is created by plotting the true positive rate against the false positive rate at various threshold settings. Both theoretical analysis and experimental results demonstrate that the ROC curve and the area under the curve are better and more intuitive indicators of the performance of the GI, compared with conventional evaluation methods. Additionally, for examining gray-scale objects, the calculation of the volume under the ROC surface is analyzed and serves as a performance metric. Our scheme should attract general interest and open exciting prospects for ROC analysis in thermal GI.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance analysis of compressive ghost imaging based on different signal reconstruction techniques

Yan Kang, Yin-Ping Yao, Zhi-Hua Kang, Lin Ma, and Tong-Yi Zhang
J. Opt. Soc. Am. A 32(6) 1063-1067 (2015)

Ghost imaging with nonuniform thermal light fields

Hu Li, Jianhong Shi, and Guihua Zeng
J. Opt. Soc. Am. A 30(9) 1854-1861 (2013)

Gerchberg-Saxton-like ghost imaging

Wei Wang, Xuemei Hu, Jindan Liu, Suzheng Zhang, Jinli Suo, and Guohai Situ
Opt. Express 23(22) 28416-28422 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription