Abstract

The newly developed x-ray differential phase-contrast imaging technique has attracted increasing research interest. In this study, we quantitatively analyze the fringe visibility obtained in differential phase-contrast imaging. Numerical results of the visibility for polychromatic x rays with different structure heights of absorption gratings are shown and discussed. Furthermore, the fringe visibility of the nonabsorption grating approach is calculated, and based on the results, we conclude that this approach can potentially be applied for higher x-ray photon energies. These analytic results will be useful for designing a differential phase-contrast imaging system for different applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative theory of X-ray interferometers based on dual phase grating: fringe period and visibility

Aimin Yan, Xizeng Wu, and Hong Liu
Opt. Express 26(18) 23142-23155 (2018)

Non-absorption grating approach for X-ray phase contrast imaging

Yang Du, Xin Liu, Yaohu Lei, Jinchuan Guo, and Hanben Niu
Opt. Express 19(23) 22669-22674 (2011)

Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum

Adrian Sarapata, Marian Willner, Marco Walter, Thomas Duttenhofer, Konradin Kaiser, Pascal Meyer, Christian Braun, Alexander Fingerle, Peter B. Noël, Franz Pfeiffer, and Julia Herzen
Opt. Express 23(1) 523-535 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription