Abstract

Multispectral imagers reveal information unperceivable to humans and conventional cameras. Here, we demonstrate a compact single-shot multispectral video-imaging camera by placing a micro-structured diffractive filter in close proximity to the image sensor. The diffractive filter converts spectral information to a spatial code on the sensor pixels. Following a calibration step, this code can be inverted via regularization-based linear algebra to compute the multispectral image. We experimentally demonstrated spectral resolution of 9.6 nm within the visible band (430–718 nm). We further show that the spatial resolution is enhanced by over 30% compared with the case without the diffractive filter. We also demonstrate Vis-IR imaging with the same sensor. Because no absorptive color filters are utilized, sensitivity is preserved as well. Finally, the diffractive filters can be easily manufactured using optical lithography and replication techniques.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot multispectral imaging with a monochromatic camera

Sujit Kumar Sahoo, Dongliang Tang, and Cuong Dang
Optica 4(10) 1209-1213 (2017)

Single-shot multispectral imager using spatially multiplexed Fourier spectral filters

Chuan Ni, Jie Jia, Matthew Howard, Keigo Hirakawa, and Andrew Sarangan
J. Opt. Soc. Am. B 35(5) 1072-1079 (2018)

Video rate nine-band multispectral short-wave infrared sensor

Mary R. Kutteruf, Michael K. Yetzbacher, Michael J. DePrenger, Kyle M. Novak, Corey A. Miller, Trijntje Valerie Downes, and Andrey V. Kanaev
Appl. Opt. 53(13) C45-C53 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  2. S. W. Hell, “Microscopy and focal switch,” Nat. Methods 6, 24–32 (2009).
    [Crossref]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  4. T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
    [Crossref]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  7. B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July 20, 1976).
  8. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210–2220 (2000).
    [Crossref]
  9. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  10. F. Sigernes, Y. Ivanov, S. Chernouss, T. Trondsen, A. Roldugin, Y. Fedorenko, B. Kozelov, A. Kirillov, I. Kornilov, V. Safargaleev, S. Holmen, M. Dyrland, D. Lorentzen, and L. Baddeley, “Hyperspectral all-sky imaging of auroras,” Opt. Express 20, 27650–27660 (2012).
    [Crossref]
  11. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [Crossref]
  12. T. Okamoto and I. Yanaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
    [Crossref]
  13. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
    [Crossref]
  14. M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).
  15. N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
    [Crossref]
  16. K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20, 21917–21923 (2012).
    [Crossref]
  17. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  18. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref]
  19. P. Wang and R. Menon, “Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics,” Optica 2, 933–939 (2015).
    [Crossref]
  20. P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
    [Crossref]
  21. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref]
  22. Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).
  23. P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
    [Crossref]
  24. P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
    [Crossref]
  25. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  26. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  27. B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1, 175–180 (2014).
    [Crossref]
  28. P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
    [Crossref]
  29. P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
    [Crossref]
  30. P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS MOEMS 14, 023507 (2015).
    [Crossref]
  31. K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [Crossref]
  32. P. Wang and R. Menon, “Computational multi-spectral video imaging,” arXiv:1705.09321v1 (2017) [supplementary information].
  33. C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
    [Crossref]
  34. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
    [Crossref]
  35. T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
    [Crossref]
  36. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010).
    [Crossref]
  37. N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
    [Crossref]
  38. R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.
  39. A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patentUS20060072109 A1 (April 6, 2006).
  40. G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
    [Crossref]
  41. G. Kim and R. Menon, “An ultra-small three dimensional computational microscope,” Appl. Phys. Lett. 105, 061114 (2014).
    [Crossref]
  42. H.-Y. Liu, J. Zhong, and L. Waller, “Multiplexed phase-space imaging for 3D fluorescence microscopy,” Opt. Express 25, 14986–14995 (2017).
    [Crossref]
  43. N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).
  44. M. W. Kudenov and D. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20, 17973–17986 (2012).
    [Crossref]
  45. M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49, 4067–4076 (2010).
    [Crossref]
  46. M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).
  47. Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
    [Crossref]
  48. G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics 42, 501–513 (1977).
    [Crossref]
  49. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
    [Crossref]
  50. P. Wang and R. Menon, “Computational snapshot angular-spectral lensless imaging,” arXiv: 1707.08104 (2017).
  51. D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, “Wavelength multiplexing system for a single mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
    [Crossref]
  52. A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
    [Crossref]
  53. A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
    [Crossref]
  54. O. Cossairt and S. K. Nayar, “Spectral focal sweep: extended depth of field from chromatic aberrations,” in IEEE International Conference on Computational Photography (ICCP) (2010).

2017 (1)

2016 (2)

P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

2015 (6)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS MOEMS 14, 023507 (2015).
[Crossref]

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

P. Wang and R. Menon, “Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics,” Optica 2, 933–939 (2015).
[Crossref]

2014 (4)

2013 (4)

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

2012 (4)

2011 (3)

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
[Crossref]

2010 (2)

2009 (3)

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[Crossref]

S. W. Hell, “Microscopy and focal switch,” Nat. Methods 6, 24–32 (2009).
[Crossref]

2008 (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
[Crossref]

2007 (1)

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

2006 (3)

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

2004 (2)

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

2000 (2)

1997 (2)

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, “Wavelength multiplexing system for a single mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
[Crossref]

1994 (1)

1991 (1)

1977 (1)

G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics 42, 501–513 (1977).
[Crossref]

Aharoni, R.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Alam, M.

Andrew, T. L.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[Crossref]

Antipa, N.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Ashe, P. R.

N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
[Crossref]

Asif, M. S.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

Athale, R.

R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Ayremlou, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

Baddeley, L.

Baraniuk, R.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

Baretj, F.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Basiji, D.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July 20, 1976).

Bearman, G.

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

Bedard, N.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bodkin, A.

A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patentUS20060072109 A1 (April 6, 2006).

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bostan, E.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Brady, D.

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Cao, H.

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1, 175–180 (2014).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Capasso, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Carmonaf, P. L.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Chen, Q.

Chernouss, S.

Chrien, T. G.

Collins, S.

Cossairt, O.

O. Cossairt and S. K. Nayar, “Spectral focal sweep: extended depth of field from chromatic aberrations,” in IEEE International Conference on Computational Photography (ICCP) (2010).

Cumming, D. R. S.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Davisi, A. B.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Dereniak, D. L.

Dereniak, E. L.

Disneyg, M. I.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Dominguez-Caballero, J. A.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Drysdale, T. D.

Dyrland, M.

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Ebeling, C. G.

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

Euliss, G.

R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.

Fedorenko, Y.

Ferreira, C.

Fink, W.

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

Fixler, C.

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

Fletcher-Holmes, D. W.

Friedman, D. J.

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Frost, K.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Fu, Q.

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

Gao, L.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

Garcia, J.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, “Wavelength multiplexing system for a single mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
[Crossref]

García, J.

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

Garini, Y.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Garman, J.

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Gat, N.

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Geelen, B.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

George, T. C.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Gerhart, G. R.

Gerton, J. M.

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

Gorman, A.

Grant, J.

Green, R. O.

Guo, L. J.

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

Gupta, N.

N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
[Crossref]

Gur, A.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Hall, B. E.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Harvey, A. R.

Heckel, R.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Heide, F.

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

Heidrich, W.

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Holmen, S.

Horstmeyer, R.

R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.

Humayun, M.

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

Hunt, G. R.

G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics 42, 501–513 (1977).
[Crossref]

Ivanov, Y.

Jacquemoudk, S.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Jayapala, M.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

John, R.

Johnson, W. R.

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

Jungwirth, M. E. L.

Jurss, M.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Kaufmanna, R. K.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Kester, R. T.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

Kim, G.

G. Kim and R. Menon, “An ultra-small three dimensional computational microscope,” Appl. Phys. Lett. 105, 061114 (2014).
[Crossref]

Kirillov, A.

Knyazikhin, Y.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Kornilov, I.

Kozelov, B.

Kudenov, M. W.

Kuo, G.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Kutchoukov, V. G.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Lambrechts, A.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Levoy, M.

R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.

Lewisg, P.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Li, M. D.

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Liu, H.-Y.

Lohmann, A. W.

Lorentzen, D.

Lyapustine, A.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Marom, E.

Marshake, A.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Martineau, J.

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

Mas, D.

Masschelein, B.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Meiri, A.

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

Mendlovic, D.

Menon, R.

P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS MOEMS 14, 023507 (2015).
[Crossref]

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

P. Wang and R. Menon, “Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics,” Optica 2, 933–939 (2015).
[Crossref]

P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

G. Kim and R. Menon, “An ultra-small three dimensional computational microscope,” Appl. Phys. Lett. 105, 061114 (2014).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[Crossref]

P. Wang and R. Menon, “Computational multi-spectral video imaging,” arXiv:1705.09321v1 (2017) [supplementary information].

P. Wang and R. Menon, “Computational snapshot angular-spectral lensless imaging,” arXiv: 1707.08104 (2017).

Mico, V.

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Micó, V.

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

Mildenhall, B.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

Morrissey, P.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Mõttusd, M.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Mouroulis, P.

Mynenia, R. B.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Nayar, S. K.

O. Cossairt and S. K. Nayar, “Spectral focal sweep: extended depth of field from chromatic aberrations,” in IEEE International Conference on Computational Photography (ICCP) (2010).

Ng, R.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Norton, A.

A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patentUS20060072109 A1 (April 6, 2006).

Okamoto, T.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Ortyn, W. E.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Peng, Y.

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Rautiainenc, M.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Redding, B.

B. Redding, M. Alam, M. Seifert, and H. Cao, “High-resolution and broadband all-fiber spectrometers,” Optica 1, 175–180 (2014).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Roldugin, A.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Safargaleev, V.

Sankaranarayanan, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Schullb, M. A.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Schwarz, A.

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

Scriven, G.

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Seifert, M.

Seo, M.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Sheinis, A.

A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patentUS20060072109 A1 (April 6, 2006).

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Sigernes, F.

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Soussan, P.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Stenbergc, P.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Tack, N.

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

Tan, S.

N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
[Crossref]

Tkaczyk, T. S.

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

Trondsen, T.

Tsai, H.-Y.

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[Crossref]

Vanderbilth, V.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Veeraraghavan, A.

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

Wagadarikar, A.

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

Waller, L.

H.-Y. Liu, J. Zhong, and L. Waller, “Multiplexed phase-space imaging for 3D fluorescence microscopy,” Opt. Express 25, 14986–14995 (2017).
[Crossref]

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

Walls, K.

Wang, P.

P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS MOEMS 14, 023507 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

P. Wang and R. Menon, “Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics,” Optica 2, 933–939 (2015).
[Crossref]

P. Wang and R. Menon, “Computational spectrometer based on a broadband diffractive optic,” Opt. Express 22, 14575–14587 (2014).
[Crossref]

P. Wang and R. Menon, “Computational spectroscopy via singular-value-decomposition and regularization,” Opt. Express 22, 21541–21550 (2014).
[Crossref]

P. Wang and R. Menon, “Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics,” Opt. Express 21, 6274–6285 (2013).
[Crossref]

P. Wang and R. Menon, “Computational multi-spectral video imaging,” arXiv:1705.09321v1 (2017) [supplementary information].

P. Wang and R. Menon, “Computational snapshot angular-spectral lensless imaging,” arXiv: 1707.08104 (2017).

Weiss, A.

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

Wichmann, J.

Willett, R.

Wilson, D. W.

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Yanaguchi, I.

Yanga, Y.

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Zalevsky, Z.

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

D. Mendlovic, J. Garcia, Z. Zalevsky, E. Marom, D. Mas, C. Ferreira, and A. W. Lohmann, “Wavelength multiplexing system for a single mode image transmission,” Appl. Opt. 36, 8474–8480 (1997).
[Crossref]

Zhang, J.

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Zhong, J.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Zimmerman, C. A.

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

ACM Trans. Graph. (1)

Y. Peng, Q. Fu, F. Heide, and W. Heidrich, “The diffractive achromat full spectrum computational imaging with diffractive optics,” ACM Trans. Graph. 35, 31 (2016).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Kim and R. Menon, “An ultra-small three dimensional computational microscope,” Appl. Phys. Lett. 105, 061114 (2014).
[Crossref]

Cytometry A (1)

T. C. George, B. E. Hall, C. A. Zimmerman, K. Frost, M. Seo, W. E. Ortyn, D. Basiji, and P. Morrissey, “Distinguishing modes of cell death using imagestream (TM) multispectral imaging cytometry,” Cytometry A 59A, 237–245 (2004).
[Crossref]

Geophysics (1)

G. R. Hunt, “Spectral signatures of particulate minerals in the visible and near infrared,” Geophysics 42, 501–513 (1977).
[Crossref]

J. Biomed. Opt. (2)

R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt. 16, 056005 (2011).
[Crossref]

G. Bearman, W. R. Johnson, D. W. Wilson, W. Fink, and M. Humayun, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007).
[Crossref]

J. Micro/Nanolithogr. MEMS MOEMS (1)

P. Wang and R. Menon, “Optical microlithography on oblique and multiplane surfaces using diffractive phase masks,” J. Micro/Nanolithogr. MEMS MOEMS 14, 023507 (2015).
[Crossref]

J. Phys. D (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D 37, R123–R141 (2004).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Nanoscale (1)

C. G. Ebeling, A. Meiri, J. Martineau, Z. Zalevsky, J. M. Gerton, and R. Menon, “Increased localization precision by interference fringe analysis,” Nanoscale 7, 10430–10437 (2015).
[Crossref]

Nat. Methods (2)

S. W. Hell, “Microscopy and focal switch,” Nat. Methods 6, 24–32 (2009).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Nat. Photonics (3)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Opt. Commun. (2)

A. Schwarz, A. Weiss, C. Fixler, Z. Zalevsky, V. Micó, and J. García, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282, 2780–2786 (2009).
[Crossref]

A. Gur, R. Aharoni, Z. Zalevsky, V. G. Kutchoukov, V. Mico, J. Garcia, and Y. Garini, “Sub-wavelength and non-periodic holes array based fully lensless imager,” Opt. Commun. 284, 3509–3517 (2011).
[Crossref]

Opt. Eng. (2)

N. Gupta, P. R. Ashe, and S. Tan, “Miniature snapshot multispectral imager,” Opt. Eng. 50, 033203 (2011).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Opt. Express (8)

Opt. Lett. (2)

Optica (2)

Proc. Natl. Acad. Sci. USA (1)

Y. Knyazikhin, M. A. Schullb, P. Stenbergc, M. Mõttusd, M. Rautiainenc, Y. Yanga, A. Marshake, P. L. Carmonaf, R. K. Kaufmanna, P. Lewisg, M. I. Disneyg, V. Vanderbilth, A. B. Davisi, F. Baretj, S. Jacquemoudk, A. Lyapustine, and R. B. Mynenia, “Hyperspectral remote sensing of foliar nitrogen content,” Proc. Natl. Acad. Sci. USA 110, E185–E192 (2013).
[Crossref]

Proc. SPIE (3)

N. Gat, G. Scriven, J. Garman, M. D. Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

K. Reimer, H. J. Quenzer, M. Jurss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[Crossref]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Prog. Photovoltaics (1)

P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, and R. Menon, “A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics,” Prog. Photovoltaics 23, 1073–1079 (2015).
[Crossref]

Sci. Rep. (1)

P. Wang, N. Mohammad, and R. Menon, “Super-achromatic diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref]

Science (3)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

T. L. Andrew, H.-Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324, 917–921 (2009).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Other (10)

B. E. Bayer, “Color imaging array,” U.S. patent3,971,065 (July 20, 1976).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

M. Jayapala, A. Lambrechts, N. Tack, B. Geelen, B. Masschelein, and P. Soussan, “Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging,” in International Image Sensor Workshop (Snowbird, 2013).

P. Wang and R. Menon, “Computational multi-spectral video imaging,” arXiv:1705.09321v1 (2017) [supplementary information].

R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible multimodal camera using a light field architecture,” in IEEE International Conference on Computational Photography (ICCP) (2009), pp. 1–8.

A. Bodkin, A. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U.S. patentUS20060072109 A1 (April 6, 2006).

M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. Baraniuk, “FlatCam: thin, bare-sensor cameras using coded aperture and computation,” arXiv:1509.00116v2 (2016).

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-exposure 3D imaging,” arXiv: 1710.02134 (2016).

O. Cossairt and S. K. Nayar, “Spectral focal sweep: extended depth of field from chromatic aberrations,” in IEEE International Conference on Computational Photography (ICCP) (2010).

P. Wang and R. Menon, “Computational snapshot angular-spectral lensless imaging,” arXiv: 1707.08104 (2017).

Supplementary Material (4)

NameDescription
» Visualization 1       Original video on LCD screen.
» Visualization 2       Raw data from monochrome sensor.
» Visualization 3       Reconstructed RGB video from multispectral data.
» Visualization 4       Reconstructed multispectral video.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the single-shot multispectral imager. A diffractive filter is placed in close proximity to the sensor. Due to diffraction through the filter, object points A and B are imaged to diffraction patterns (blue and red circles) surrounding points A and B on the sensor. The diffraction patterns depend on the wavelength and the spatial location of the object point. (b) Schematic of the assembly comprised of the diffractive-filter (DF) and the sensor array. The DF has features of width 3 μm and period 18 μm. The monochrome CMOS sensor has a pixel size of 6 μm. (c) Photograph of the fabricated DF on glass substrate. (d) Micrographs of the fabricated DF. Oblique illumination is applied to enhance contrast (insets: images with larger magnifications). (e) Atomic-force measurement of the DF delimited by the black box in (d). Structure has maximum height of 1.2 μm. Pixel size of 3 μm is labeled, and one period is enclosed by the white-dashed box.
Fig. 2.
Fig. 2. (a) Exemplary measured data for A ( x , y ; x , y , λ ) at five spatial locations and four wavelengths. Each frame has 150 × 150 pixels. (b) Spectral correlation functions versus wavelength spacing. (c) Spatial correlation functions versus position spacing (top panel: X direction; bottom panel: Y direction).
Fig. 3.
Fig. 3. Experimental results of the multispectral frames and color images using regularization based on the raw images and the calibrated PSFs. The designed object patterns to be displayed, the reference RGB images (3.6 mm by 3.6 mm field of view, 25 × 25 pixels), the raw monochrome images ( 150 × 150 sensor pixels), and the reconstructed RGB images ( 3.6    mm × 3.6    mm field of view) of the test patterns are shown as the top row. The normalized multispectral frames ( 3.6    mm × 3.6    mm field of view) are plotted in the bottom four rows. Six object patterns are tested: (a) two-color letter “T”; (b) three-color letter “H”; (c) four-color letters “UTAH”; (d) one-color letter “A”; (e) seven-color dot array; (f) rainbow.
Fig. 4.
Fig. 4. Normalized spectra at the centers of the dots of different colors in Fig. 3(e). The reference spectra measured by a commercial spectrometer are plotted in black solid lines. The spectra are of (a) blue, (b) green, (c) red, (d) yellow, (e) white, (f) cyan, and (g) purple. (h) Plots of errors between reconstructed and reference spectra. Colors of curves correspond to the spectra of colors in (a)–(g). The errors between reconstructed and reference spectra are less than 8% on average (see supplementary information in [32]).
Fig. 5.
Fig. 5. (a) Measured modulation transfer functions (MTFs) in X and Y axes and three primary color channels. (b) Exemplary test object patterns at five spatial frequencies; their reference images using color and monochrome cameras and the reconstruction results. (c) Averaged image reconstruction error versus signal-to-noise ratio (SNR) in three basic color channels. Gaussian noise is added to the numerically synthesized sensor image to change the SNR. (d) Root mean squares (RMSs) of differences between the PSF images with and without defocus. A depth of field is estimated (light green region). Blue, green, yellow, and red curves are from four example wavelengths. The gray curve is averaged over all wavelengths. (e) Two examples for 3D imaging experiments: the two-color letter “T” and the one-color letter “U.” (f) Magnified views of the experimentally calibrated PSFs illuminated by two polarization states. TE and TM polarizations are defined on the left side. They are of the same object point and the same wavelength. They are both 70 × 70 sensor pixels.
Fig. 6.
Fig. 6. Reconstruction results to demonstrate trade-off between spectral resolution and field of view. (a) Synthesized RGB color image of 6    mm × 6    mm field of view. (b) and (c) Multispectral data of two examples: letter “H” and letter “T,” respectively. Nine wavelengths from 430 nm to 670 nm with 30 nm spacing are considered.
Fig. 7.
Fig. 7. Imaging an extended field of view. (a) Reference color image of the whole test pattern over a larger frame. Five small test patterns are included. The field of view (FOV) of small patterns and the distance between them are labeled. (b) Reference color images of the individual small patterns and their reconstructed RGB color images.
Fig. 8.
Fig. 8. Visible-IR imaging. (a) Schematic of the visible-IR imaging experiment. An 850 nm laser illuminates the iPhone 6 screen. Both the DF-based camera and the reference color camera are used to take images. (b) Examples of the reconstructed multispectral images. A test pattern of green letter “T” is considered. The 850 nm IR spot does not show up in the reference RGB image but can be resolved from the reconstructed multispectral data. The RGB color image reconstructed from multispectral data within the visible band is also shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

min { AS I 2 2 + ω 2 S 2 2 } .
I ω = i = 1 n ϕ i [ ω ] u i T S σ i v i ,
ϕ i [ ω ] = σ i 2 σ i 2 + ω 2 .
C ( x , y , Δ λ ) = A ( x , y ; x , y , λ ) · A ( x , y ; x , y , λ + Δ λ ) d x d y .

Metrics