Abstract

For practical wireless communication links, one of the critical challenges is the random fluctuation of turbulence that will impair link performance. Here a transmission model of partially coherent elegant Laguerre–Gaussian (ELG) beams in oceanic turbulence is established. An analytical formula for channel capacity of a partially coherent ELG beam propagating through a turbulent ocean is derived. The effects of oceanic turbulence on the evolution of channel capacity performance are studied quantitatively in a series of numerical simulations. Research results show that decreasing the rate of dissipation of mean-square temperature and ratio of temperature to salinity, as well as increasing the dissipation rate of turbulent kinetic energy per unit mass of fluid of a turbulent ocean can significantly improve communication channel capacity. Furthermore, choosing optimum beam source parameters is favorable to mitigate the influence of oceanic turbulence. Results also show that in the underwater turbulence, the partially coherent ELG beams are more affected by turbulence as compared to the fully coherent ELG beams. These study results may provide potential help in designing the free-space optical vortex communication systems.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of an optical vortex carried by a partially coherent Laguerre–Gaussian beam in turbulent ocean

Mingjian Cheng, Lixin Guo, Jiangting Li, Qingqing Huang, Qi Cheng, and Dan Zhang
Appl. Opt. 55(17) 4642-4648 (2016)

Average capacity of a UWOC system with partially coherent Gaussian beams propagating in weak oceanic turbulence

Zhengxing Zou, Ping Wang, Wenwen Chen, Ang Li, Hongxin Tian, and Lixin Guo
J. Opt. Soc. Am. A 36(9) 1463-1474 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription