Abstract

Double-pass systems rely on backscattering of light by the human ocular fundus to assess the optical quality of the eye. In this work, we present a method to reduce double-pass image degradation caused by undesired multiple scattering effects in the eye fundus. The reduction is based on combined data processing of simultaneous measurements using two different configurations: one symmetric with equal entrance and exit pupils and another asymmetric with unequal entrance and exit pupils. Under certain conditions, such scattering effects may be effectively suppressed. Measurements of human eyes show that, although multiple fundus scattering imposes a shift on the estimations, double-pass systems can be used to predict the optical quality of the eye within a population.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations

Carlos E. García-Guerra, Mikel Aldaba, Montserrat Arjona, Fernando Díaz-Doutón, Joan A. Martínez-Roda, and Jaume Pujol
J. Opt. Soc. Am. A 33(11) 2150-2157 (2016)

Binocular open-view system to perform estimations of aberrations and scattering in the human eye

Carlos E. García-Guerra, Mikel Aldaba, Montserrat Arjona, and Jaume Pujol
Appl. Opt. 54(32) 9504-9508 (2015)

Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system

Pablo Artal, Ignacio Iglesias, Norberto López-Gil, and Daniel G. Green
J. Opt. Soc. Am. A 12(10) 2358-2366 (1995)

References

  • View by:
  • |
  • |
  • |

  1. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [Crossref]
  2. B. Vohnsen, “Directional sensitivity of the retina: a layered scattering model of outer-segment photoreceptor pigments,” Biomed. Opt. Express 5, 1569–1587 (2014).
    [Crossref]
  3. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [Crossref]
  4. J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
    [Crossref]
  5. I. J. Hodgkinson, P. B. Greer, and A. C. B. Molteno, “Point-spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
    [Crossref]
  6. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
    [Crossref]
  7. D. Christaras, H. Ginis, and P. Artal, “Spatial properties of fundus reflectance and red-green relative spectral sensitivity,” J. Opt. Soc. Am. A 32, 1723–1728 (2015).
    [Crossref]
  8. H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
    [Crossref]
  9. D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
    [Crossref]
  10. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
    [Crossref]
  11. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [Crossref]
  12. C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
    [Crossref]
  13. P. Artal, D. G. Green, I. Iglesias, and N. López-Gil, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [Crossref]
  14. P. Artal, S. Marcos, D. R. Williams, and R. Navarro, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
    [Crossref]
  15. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
    [Crossref]
  16. C. E. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Binocular open-view system to perform estimations of aberrations and scattering in the human eye,” Appl. Opt. 54, 9504–9508 (2015).
    [Crossref]
  17. F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
    [Crossref]
  18. I. E. Commission, “Safety of laser products-Part 1: Equipment classification and requirements,” , 2014.
  19. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
    [Crossref]
  20. A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
    [Crossref]
  21. D. Valente and B. Vohnsen, “Retina-simulating phantom produced by photolithography,” Opt. Lett. 42, 4623–4626 (2017).
    [Crossref]
  22. N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
    [Crossref]
  23. J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
    [Crossref]
  24. M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
    [Crossref]

2018 (1)

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

2017 (2)

D. Valente and B. Vohnsen, “Retina-simulating phantom produced by photolithography,” Opt. Lett. 42, 4623–4626 (2017).
[Crossref]

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

2016 (2)

C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
[Crossref]

2011 (1)

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

2010 (1)

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

1997 (2)

1996 (1)

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[Crossref]

1995 (2)

1994 (3)

1989 (1)

1987 (1)

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Agrawal, A.

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

Aguirre, M.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

Aldaba, M.

Arjona, M.

Artal, P.

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

D. Christaras, H. Ginis, and P. Artal, “Spatial properties of fundus reflectance and red-green relative spectral sensitivity,” J. Opt. Soc. Am. A 32, 1723–1728 (2015).
[Crossref]

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[Crossref]

P. Artal, S. Marcos, D. R. Williams, and R. Navarro, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[Crossref]

P. Artal, D. G. Green, I. Iglesias, and N. López-Gil, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[Crossref]

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[Crossref]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

Artigas, R.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

Berendschot, T. T.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[Crossref]

Bescós, J.

Borrás, R. M.

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

Brainard, D. H.

Bueno, J. M.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

Cadavall, C.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Christaras, D.

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

D. Christaras, H. Ginis, and P. Artal, “Spatial properties of fundus reflectance and red-green relative spectral sensitivity,” J. Opt. Soc. Am. A 32, 1723–1728 (2015).
[Crossref]

Commission, I. E.

I. E. Commission, “Safety of laser products-Part 1: Equipment classification and requirements,” , 2014.

Delori, F. C.

Díaz-Doutón, F.

C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
[Crossref]

F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
[Crossref]

García-Guerra, C. E.

Ginis, H.

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

D. Christaras, H. Ginis, and P. Artal, “Spatial properties of fundus reflectance and red-green relative spectral sensitivity,” J. Opt. Soc. Am. A 32, 1723–1728 (2015).
[Crossref]

Ginis, H. S.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

Green, D. G.

Greer, P. B.

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Hammer, D. X.

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

Hodgkinson, I. J.

Iglesias, I.

Kedia, N.

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

Laguarta, F.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

Liang, J.

Liu, Z.

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

López-Gil, N.

Marcos, S.

Martínez-Roda, J. A.

C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
[Crossref]

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

McMahon, M. J.

Molteno, A. C. B.

Navarro, R.

Ondategui, J. C.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

Pennos, A.

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

Perez, G. M.

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

Peris, E.

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

Pflibsen, K. P.

Pintó, A.

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

Pujol, J.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
[Crossref]

C. E. García-Guerra, M. Aldaba, M. Arjona, and J. Pujol, “Binocular open-view system to perform estimations of aberrations and scattering in the human eye,” Appl. Opt. 54, 9504–9508 (2015).
[Crossref]

F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
[Crossref]

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

Sanàbria, F.

F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
[Crossref]

Santamaría, J.

Sochol, R.

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

Valente, D.

van de Kraats, J.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[Crossref]

van Norren, D.

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[Crossref]

Vilaseca, M.

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

Vohnsen, B.

Williams, D. R.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Clin. Exp. Optom. (1)

J. A. Martínez-Roda, M. Vilaseca, J. C. Ondategui, M. Aguirre, and J. Pujol, “Effects of aging on optical quality and visual function,” Clin. Exp. Optom. 99, 518–525 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

H. S. Ginis, G. M. Perez, J. M. Bueno, A. Pennos, and P. Artal, “Wavelength dependence of the ocular straylight,” Invest. Ophthalmol. Visual Sci. 54, 3702 (2013).
[Crossref]

J. Eur. Opt. Soc. (1)

F. Sanàbria, F. Díaz-Doutón, M. Aldaba, and J. Pujol, “Spherical refractive correction with an electro-optical liquid lens in a double-pass system,” J. Eur. Opt. Soc. 8, 13062 (2013).
[Crossref]

J. Opt. Soc. Am. A (10)

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[Crossref]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[Crossref]

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[Crossref]

C. E. García-Guerra, M. Aldaba, M. Arjona, F. Díaz-Doutón, J. A. Martínez-Roda, and J. Pujol, “Response for light scattered in the ocular fundus from double-pass and Hartmann–Shack estimations,” J. Opt. Soc. Am. A 33, 2150–2157 (2016).
[Crossref]

P. Artal, D. G. Green, I. Iglesias, and N. López-Gil, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
[Crossref]

P. Artal, S. Marcos, D. R. Williams, and R. Navarro, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995).
[Crossref]

I. J. Hodgkinson, P. B. Greer, and A. C. B. Molteno, “Point-spread function for light scattered in the human ocular fundus,” J. Opt. Soc. Am. A 11, 479–486 (1994).
[Crossref]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11, 3123–3135 (1994).
[Crossref]

D. Christaras, H. Ginis, and P. Artal, “Spatial properties of fundus reflectance and red-green relative spectral sensitivity,” J. Opt. Soc. Am. A 32, 1723–1728 (2015).
[Crossref]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
[Crossref]

J. Physiol. (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Ophthalmic Physiolog. Opt. (1)

D. Christaras, H. Ginis, A. Pennos, and P. Artal, “Scattering contribution to the double-pass PSF using Monte Carlo simulations,” Ophthalmic Physiolog. Opt. 37, 342–346 (2017).
[Crossref]

Opt. Lett. (1)

Optom. Vision Sci. (1)

M. Vilaseca, E. Peris, J. Pujol, R. M. Borrás, and M. Arjona, “Intra- and intersession repeatability of a double-pass instrument,” Optom. Vision Sci. 87, 675–681 (2010).
[Crossref]

Proc. SPIE (2)

N. Kedia, Z. Liu, R. Sochol, D. X. Hammer, and A. Agrawal, “3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities,” Proc. SPIE 10474, 104740D (2018).
[Crossref]

A. Pintó, F. Laguarta, R. Artigas, and C. Cadavall, “Non-contact measurement of aspherical and freeform optics with a new confocal tracking profiler,” Proc. SPIE 8169, 81690V (2011).
[Crossref]

Vision Res. (1)

J. van de Kraats, T. T. Berendschot, and D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[Crossref]

Other (1)

I. E. Commission, “Safety of laser products-Part 1: Equipment classification and requirements,” , 2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic representation of the DP system used during the measurements. The meaning of the labels is explained in the text.
Fig. 2.
Fig. 2. Measured DP MTF of the artificial eye for unequal pupil diameters (line with plus signs). The best possible unequal DP response (discontinuous line), and the estimated curves with reduced (line with circles) and suppressed (line with squares) scattering are also plotted.
Fig. 3.
Fig. 3. Measured DP images for unequal pupil diameters (top) and their correspondent estimations with reduced impact of multiple scattering from the ocular fundus (bottom).
Fig. 4.
Fig. 4. Individual (lines in light gray) and average (line with plus signs) asymmetric DP MTF for the human eyes. The best possible DP response (discontinuous line), and the estimated average curves with reduced (line with circles) and suppressed (line with squares) scattering are also plotted.
Fig. 5.
Fig. 5. Relative Strehl ratios of the measured (plus signs) and the estimated responses with reduced (circles) and suppressed (squares) scattering as a function of the RMS error computed from HS data. Information for colored eyes are indicated with a point at the center of the markers. The tendency lines fitting the data are also included (continuous lines). The overlapped Strehl ratios of subject labeled as S5 are indicated in the figure.
Fig. 6.
Fig. 6. Bland–Altman plots representing the differences between the estimated and measured SR as a function of the mean of such data for the (a) reduced and (b) suppressed scattering cases. The discontinuous lines show the mean of the differences and the corresponding 95%. The data for dark-brown (circles) and colored eyes (plus signs) are presented in the figure.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

MTF DPe = MTF 2 mm · MTF FS · MTF 2 mm MTF DPu = MTF 2 mm · MTF FS · MTF 4 mm ,
MTF ^ 4 mm C = MTF DPu MTF DL 2 mm = MTF 2 mm · MTF FS · MTF 4 mm MTF DL 2 mm MTF FS · MTF 4 mm .
MTF ^ 4 mm = MTF DPu MTF DPe = MTF 2 mm · MTF FS · MTF 4 mm MTF 2 mm · MTF FS = MTF FS · MTF 4 mm .
MTF ^ DPuR = MTF DL 2 mm · MTF ^ 4 mm = MTF DL 2 mm · MTF FS · MTF 4 mm .
MTF FS MTF DPe MTF DL 2 mm .
MTF ^ DPuS = MTF ^ DPuR MTF FS = MTF DL 2 mm · MTF 4 mm .

Metrics