Abstract

In dynamic LED lighting, the perceived speed of changing color is an important concept; however, there exists no suitable temporal color space. In a psychophysical experiment, we compared the perceived speed of periodic temporal transitions in CIELAB chroma and hue directions around five base colors [the five Munsell hues: 5R (red), 5Y (yellow), 5G (green), 5B (blue), and 5P (purple)]. The experiment was conducted in a light laboratory, with the main illumination stimulus subtending a visual angle of 101×77deg. In sequential paired presentations, observers were asked to identify which transition appeared faster, and points of subjective equality between transitions were computed. The speed of transitions was defined in CIELAB ΔEab*/s, which was shown to be temporally non-uniform; uniformity was improved using a modified color space based on speeds in the DKL space of Derrington et al. [J. Physiol. 357(1), 241 (1984)].

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unique hue stimulus selection using Munsell color chips under different chroma levels and illumination conditions

Renzo Shamey, Muhammad Zubair, and Hammad Cheema
J. Opt. Soc. Am. A 36(6) 983-993 (2019)

Color-Order System Predicting Constant Hue

F. W. Billmeyer, J. K. Beasley, and J. A. Sheldon
J. Opt. Soc. Am. 51(6) 656-666 (1961)

Perceiving the average hue of color arrays

Jacquelyn Webster, Paul Kay, and Michael A. Webster
J. Opt. Soc. Am. A 31(4) A283-A292 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. van Bommel, “Dynamic lighting at work–both in level and colour,” in 2nd CIE Expert Symposium on Light and Health, CIE X031:2006 (2006), pp. 62–67.
  2. I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
    [Crossref]
  3. M. Hartog, “Dynamic coloured lighting: an interaction concept for the creation and control of atmospheres at home,” Master’s thesis (Delft University of Technology, 2010).
  4. M. Murdoch, D. Sekulovski, and P. Seuntiëns, “The influence of speed and amplitude on visibility and perceived subtlety of dynamic light,” in Color and Imaging Conference (2011), pp. 265–269.
  5. B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
    [Crossref]
  6. B. A. Salters and M. P. C. M. Krijn, “Color reproduction for LED-based general lighting,” Proc. SPIE 6338, 63380F (2006).
    [Crossref]
  7. D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.
  8. D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.
  9. R. G. Kuehni, “Hue uniformity and the CIELAB space and color difference formula,” Color Res. Appl. 23, 314–322 (1998).
    [Crossref]
  10. H. Knau, “Thresholds for detecting slowly changing Ganzfeld luminances,” J. Opt. Soc. Am. A 17, 1382–1387 (2000).
    [Crossref]
  11. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [Crossref]
  12. M. D. Fairchild, Color Appearance Models (Wiley, 2013).
  13. M. J. Murdoch, “Characterization and control of a multi-primary LED light lab,” Opt. Express 25, 29605–29616 (2017).
    [Crossref]
  14. M. Hauta-Kasari, “Munsell colors matt (Spectrofotometer measured),” 1999 [retrieved November 14, 2017], https://www.uef.fi/en/web/spectral/munsell-colors-matt-spectrofotometer-measured .
  15. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
    [Crossref]
  16. M. Shuttleworth, Counterbalanced Measures Design (2009).
  17. F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
    [Crossref]
  18. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
    [Crossref]
  19. R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
    [Crossref]
  20. D. Nguyen-Tri and J. Faubert, “The perceived speed of drifting chromatic gratings is mechanism-dependent,” Vision Res. 42, 2073–2079 (2002).
    [Crossref]
  21. D. J. McKeefry and M. P. Burton, “The perception of speed based on L-M and S-(L+M) cone opponent processing,” Vision Res. 49, 870–876 (2009).
    [Crossref]
  22. K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
    [Crossref]
  23. Comission Internationale de L’Eclairage (CIE), “Fundamental chromaticity diagram with physiological axes,” (2005).
  24. T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
    [Crossref]
  25. M. Perz, D. Sekulovski, and M. Murdoch, “Chromatic flicker perception in human peripheral vision under mental load,” in Color and Imaging Conference (2010), pp. 33–37.

2017 (1)

2009 (3)

I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
[Crossref]

D. J. McKeefry and M. P. Burton, “The perception of speed based on L-M and S-(L+M) cone opponent processing,” Vision Res. 49, 870–876 (2009).
[Crossref]

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
[Crossref]

2006 (1)

B. A. Salters and M. P. C. M. Krijn, “Color reproduction for LED-based general lighting,” Proc. SPIE 6338, 63380F (2006).
[Crossref]

2002 (1)

D. Nguyen-Tri and J. Faubert, “The perceived speed of drifting chromatic gratings is mechanism-dependent,” Vision Res. 42, 2073–2079 (2002).
[Crossref]

2001 (1)

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[Crossref]

2000 (3)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

H. Knau, “Thresholds for detecting slowly changing Ganzfeld luminances,” J. Opt. Soc. Am. A 17, 1382–1387 (2000).
[Crossref]

1999 (2)

R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[Crossref]

K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
[Crossref]

1998 (1)

R. G. Kuehni, “Hue uniformity and the CIELAB space and color difference formula,” Color Res. Appl. 23, 314–322 (1998).
[Crossref]

1984 (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Anderson, C. M.

K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
[Crossref]

Burton, M. P.

D. J. McKeefry and M. P. Burton, “The perception of speed based on L-M and S-(L+M) cone opponent processing,” Vision Res. 49, 870–876 (2009).
[Crossref]

Clout, R.

D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.

D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Dobkins, K. R.

K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
[Crossref]

Dougherty, R. F.

R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[Crossref]

Fairchild, M. D.

M. D. Fairchild, Color Appearance Models (Wiley, 2013).

Faubert, J.

D. Nguyen-Tri and J. Faubert, “The perceived speed of drifting chromatic gratings is mechanism-dependent,” Vision Res. 42, 2073–2079 (2002).
[Crossref]

Gegenfurtner, K. R.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

Hansen, T.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
[Crossref]

Hartog, M.

M. Hartog, “Dynamic coloured lighting: an interaction concept for the creation and control of atmospheres at home,” Master’s thesis (Delft University of Technology, 2010).

Hill, N. J.

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[Crossref]

Hutchings, J. B.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

Knau, H.

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Krijn, M. P. C. M.

B. A. Salters and M. P. C. M. Krijn, “Color reproduction for LED-based general lighting,” Proc. SPIE 6338, 63380F (2006).
[Crossref]

Kuehni, R. G.

R. G. Kuehni, “Hue uniformity and the CIELAB space and color difference formula,” Color Res. Appl. 23, 314–322 (1998).
[Crossref]

Lennie, P.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

Li, B.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

Lia, B.

K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
[Crossref]

Luo, M. R.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

McKeefry, D. J.

D. J. McKeefry and M. P. Burton, “The perception of speed based on L-M and S-(L+M) cone opponent processing,” Vision Res. 49, 870–876 (2009).
[Crossref]

Murdoch, M.

M. Murdoch, D. Sekulovski, and P. Seuntiëns, “The influence of speed and amplitude on visibility and perceived subtlety of dynamic light,” in Color and Imaging Conference (2011), pp. 265–269.

M. Perz, D. Sekulovski, and M. Murdoch, “Chromatic flicker perception in human peripheral vision under mental load,” in Color and Imaging Conference (2010), pp. 33–37.

Murdoch, M. J.

Nguyen-Tri, D.

D. Nguyen-Tri and J. Faubert, “The perceived speed of drifting chromatic gratings is mechanism-dependent,” Vision Res. 42, 2073–2079 (2002).
[Crossref]

Perz, M.

D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.

M. Perz, D. Sekulovski, and M. Murdoch, “Chromatic flicker perception in human peripheral vision under mental load,” in Color and Imaging Conference (2010), pp. 33–37.

Pracejus, L.

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
[Crossref]

Press, W. A.

R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[Crossref]

Rijs, B.

I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
[Crossref]

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

Salters, B. A.

B. A. Salters and M. P. C. M. Krijn, “Color reproduction for LED-based general lighting,” Proc. SPIE 6338, 63380F (2006).
[Crossref]

Sekulovski, D.

I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
[Crossref]

M. Murdoch, D. Sekulovski, and P. Seuntiëns, “The influence of speed and amplitude on visibility and perceived subtlety of dynamic light,” in Color and Imaging Conference (2011), pp. 265–269.

D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.

D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.

M. Perz, D. Sekulovski, and M. Murdoch, “Chromatic flicker perception in human peripheral vision under mental load,” in Color and Imaging Conference (2010), pp. 33–37.

Seuntiëns, P.

M. Murdoch, D. Sekulovski, and P. Seuntiëns, “The influence of speed and amplitude on visibility and perceived subtlety of dynamic light,” in Color and Imaging Conference (2011), pp. 265–269.

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

Shuttleworth, M.

M. Shuttleworth, Counterbalanced Measures Design (2009).

Stockman, A.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

Van Beurden, M.

D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.

van Bommel, W.

W. van Bommel, “Dynamic lighting at work–both in level and colour,” in 2nd CIE Expert Symposium on Light and Health, CIE X031:2006 (2006), pp. 62–67.

Vogels, I.

I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
[Crossref]

D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.

Vogels, I. M.

D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.

Wandell, B. A.

R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[Crossref]

Wichmann, F. A.

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[Crossref]

Ying, F. T.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

Zhai, Q. Y.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

Color Res. Appl. (1)

R. G. Kuehni, “Hue uniformity and the CIELAB space and color difference formula,” Color Res. Appl. 23, 314–322 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[Crossref]

J. Soc. Inf. Disp. (1)

I. Vogels, D. Sekulovski, and B. Rijs, “How to create appealing temporal color transitions?” J. Soc. Inf. Disp. 17, 23–28 (2009).
[Crossref]

J. Vis. (1)

T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26(2009).
[Crossref]

Neuron (1)

R. F. Dougherty, W. A. Press, and B. A. Wandell, “Perceived speed of colored stimuli,” Neuron 24, 893–899 (1999).
[Crossref]

Opt. Express (1)

Percept. Psychophys. (1)

F. A. Wichmann and N. J. Hill, “The psychometric function: II. Bootstrap-based confidence intervals and sampling,” Percept. Psychophys. 63, 1314–1329 (2001).
[Crossref]

Proc. SPIE (1)

B. A. Salters and M. P. C. M. Krijn, “Color reproduction for LED-based general lighting,” Proc. SPIE 6338, 63380F (2006).
[Crossref]

Vision Res. (5)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

D. Nguyen-Tri and J. Faubert, “The perceived speed of drifting chromatic gratings is mechanism-dependent,” Vision Res. 42, 2073–2079 (2002).
[Crossref]

D. J. McKeefry and M. P. Burton, “The perception of speed based on L-M and S-(L+M) cone opponent processing,” Vision Res. 49, 870–876 (2009).
[Crossref]

K. R. Dobkins, C. M. Anderson, and B. Lia, “Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: evidence for precocious magnocellular development?” Vision Res. 39, 3223–3239 (1999).
[Crossref]

Other (11)

Comission Internationale de L’Eclairage (CIE), “Fundamental chromaticity diagram with physiological axes,” (2005).

M. Shuttleworth, Counterbalanced Measures Design (2009).

D. Sekulovski, I. M. Vogels, M. Van Beurden, and R. Clout, “Smoothness and flicker perception of temporal color transitions,” in Color and Imaging Conference (2007), pp. 112–117.

D. Sekulovski, I. Vogels, R. Clout, and M. Perz, “Changing color over time,” in Ergonomics and Health Aspects of Work with Computers, M. M. Robertson, ed. (Springer, 2011), Vol. 6779 LNCS, pp. 218–225.

M. Hauta-Kasari, “Munsell colors matt (Spectrofotometer measured),” 1999 [retrieved November 14, 2017], https://www.uef.fi/en/web/spectral/munsell-colors-matt-spectrofotometer-measured .

M. Hartog, “Dynamic coloured lighting: an interaction concept for the creation and control of atmospheres at home,” Master’s thesis (Delft University of Technology, 2010).

M. Murdoch, D. Sekulovski, and P. Seuntiëns, “The influence of speed and amplitude on visibility and perceived subtlety of dynamic light,” in Color and Imaging Conference (2011), pp. 265–269.

B. Li, Q. Y. Zhai, J. B. Hutchings, M. R. Luo, and F. T. Ying, “Atmosphere perception of dynamic LED lighting over different hue ranges,” Light. Res. Technol. (to be published).
[Crossref]

W. van Bommel, “Dynamic lighting at work–both in level and colour,” in 2nd CIE Expert Symposium on Light and Health, CIE X031:2006 (2006), pp. 62–67.

M. Perz, D. Sekulovski, and M. Murdoch, “Chromatic flicker perception in human peripheral vision under mental load,” in Color and Imaging Conference (2010), pp. 33–37.

M. D. Fairchild, Color Appearance Models (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Photograph of the DVA Lab with a neutral white 4000 K light setting. The red dots added to the photo indicate the positions on the wall that were measured; the larger dot shows the location of the characterization measurements.
Fig. 2.
Fig. 2. (a) Chroma and hue directions in the Ch plane of CIELAB LCh color space. (b) Temporal color transition as a function of time with a speed of 10 Δ E a b * / s or 40 Δ E a b * / s . The regions marked R have a fixed step size, and hence a fixed speed. The region marked R * is adapted to smooth the abrupt change in color.
Fig. 3.
Fig. 3. Illustration of the procedure for presenting one stimulus pair. V 1 , V 2 , and V 3 are the voice instructions.
Fig. 4.
Fig. 4. Proportion of “the comparison stimulus is faster than the reference stimulus” responses against the transition speed of the comparison stimulus for each of the five hues in the C H comparisons (left column) and the H H comparisons (right column). The filled squares represent the raw percentages. The colored area represents the 95% psychometric functions, m with the error bars indicating the bootstrap-based 95% confidence intervals.
Fig. 5.
Fig. 5. Bar chart of the 10 PSEs with their 95% CI for (a)  C H comparisons and (b)  H H comparisons.
Fig. 6.
Fig. 6. Length of the arrows in the figure indicates the PSE of the corresponding color transition to make it equally fast as the reference, being a transition speed of 10 Δ E a b * / s along the hue direction around the base color 5R (represented by length “1” in this figure).
Fig. 7.
Fig. 7. Overview of the answers given to the questions at the end of Sessions 1 and 2.
Fig. 8.
Fig. 8. Illustration of the segments used for calculating the slope of the a * and b * values of the temporal color transition ( L * is constant). Slope 1 covers the steps 1–30, while Slope 2 and Slope 3 cover the steps 31–90 and 91–120, respectively. These segments of steps are shown for the change in a * values.
Fig. 9.
Fig. 9. Standard deviation of PSEs as a function of α in Eq. (8). The open circle represents the standard deviation of CIELAB, while the filled circle is the minima found when α = 0.404 .
Fig. 10.
Fig. 10. Standard deviation of PSEs as a function of α in Eq. (11). The open circle represents the standard deviation of DKL, while the filled circle is the minima found when α = 0.02 .
Fig. 11.
Fig. 11. Bar charts of the 10 PSEs expressed in different color spaces: (a) CIELAB and improved CIELAB; (b) DKL and improved DKL.

Tables (1)

Tables Icon

Table 1. Questionnaire after Each Session

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

CTS = S / Δ t A / T ,
A = S × [ N × ( 1 - p ) + N × p × ( 1 - 1 2 N × p ) ] .
Δ C * = Δ E a b * ,
Δ H * = arccos ( 1 Δ E a b * 2 2 × C * 2 ) .
f = 1 1 + e ( a + b log 10 ( x ) ) × 100 % .
PSEs = | 7.76 11.25 18.48 6.12 13.52 9.30 11.13 13.39 19.70 5.61 | ,
PSEs = | 7.76 / ( 10 / 11.25 ) 11.25 18.48 / ( 10 / 6.12 ) 6.12 13.52 / ( 10 / 9.30 ) 9.30 11.13 / ( 10 / 13.39 ) 13.39 19.70 / ( 10 / 5.61 ) 5.61 | = | 8.73 11.25 11.31 6.12 12.57 9.30 14.90 13.39 11.05 5.61 | .
Δ E a b imp * / s = ( Δ a * / s ) 2 + α ( Δ b * / s ) 2 ,
Slope = ( Slope 1 Slope 2 + Slope 3 ) / 3 ,
Δ L M S / s = ( Δ L / s ) 2 + α ( Δ M / s ) 2 + β ( Δ S / s ) 2 .
Δ D K L = [ Δ ( L M ) / s ] 2 + α { Δ [ ( S ( L + M ) ] / s } 2 .

Metrics