Abstract

Calculations are performed that show the nature of finite, scalar optical beam reflection and refraction from a three-dimensional Kerr nonlinear optical interface. The numerical technique, comments on its accuracy and stability, and preliminary results are presented. At least four qualitatively different behaviors have been observed, depending on the intensity of the incident beam. These behaviors are different from previously published results for two-dimensional treatments.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amalgamation of interacting light beamlets in Kerr-type media

L. Bergé, M. R. Schmidt, J. Juul Rasmussen, P. L. Christiansen, and K. Ø. Rasmussen
J. Opt. Soc. Am. B 14(10) 2550-2562 (1997)

Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization

Si-Min Li, Zhi-Cheng Ren, Ling-Jun Kong, Sheng-Xia Qian, Chenghou Tu, Yongnan Li, and Hui-Tian Wang
Photon. Res. 4(5) B29-B34 (2016)

On the higher-order Kerr effect in femtosecond filaments

M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney
Opt. Lett. 35(21) 3685-3687 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription