Abstract

We consider the properties of a generalized perceptron learning network, taking into account the decay or the gain of the weight vector during the training stages. A mathematical proof is given that shows the conditional convergence of the learning algorithm. The analytical result indicates that the upper bound of the training steps is dependent on the gain (or decay) factor. A sufficient condition of exposure time for convergence of a photorefractive perceptron network is derived. We also describe a modified learning algorithm that provides a solution to the problem of weight vector decay in an optical perceptron caused by hologram erasure. Both analytical and simulation results are presented and discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Convergence of backward-error-propagation learning in photorefractive crystals

Gregory C. Petrisor, Adam A. Goldstein, B. Keith Jenkins, Edward J. Herbulock, and Armand R. Tanguay
Appl. Opt. 35(8) 1328-1343 (1996)

Dynamic digital photorefractive memory for optoelectronic neural network learning modules

Hironori Sasaki, Nicolas Mauduit, Jian Ma, Yeshaiahu Fainman, Sing H. Lee, and Michael S. Gray
Appl. Opt. 35(23) 4641-4654 (1996)

Gain and exposure scheduling to compensate for photorefractive neural-network weight decay

Adam A. Goldstein, Gregory C. Petrisor, and B. Keith Jenkins
Opt. Lett. 20(6) 611-613 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription