Abstract

A quantum statistical theory for a laser-driven anharmonic oscillator coupled to a system of many degrees of freedom by means of energy- and phase-dissipative mechanisms is presented. The theory is applied to the description of vibrational dynamics in an admolecule-surface system that are associated with desorption–dissociation processes. It is found that phase relaxation plays an important role in assisting the laser driving force to overcome the anharmonicity and/or detuning bottleneck. It is also shown that a shorter duration of the laser pulse is more efficient for depositing photon energy into the admolecule system.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared free-electron laser as a probe of vibrational dynamics on surfaces

N. J. Tro, D. A. Arthur, and S. M. George
J. Opt. Soc. Am. B 6(5) 995-1002 (1989)

Theory of photodesorption by infrared-laser–adsorbate coupling

H. J. Kreuzer, Z. W. Gortel, and P. Piercy
J. Opt. Soc. Am. B 4(2) 248-254 (1987)

Theory of laser-stimulated desorption spectroscopy

S. H. Lin, A. Boeglin, and B. Fain
J. Opt. Soc. Am. B 4(2) 211-218 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription