Abstract

We present a theoretical and experimental study of the damping process of the atomic velocity in Sisyphus cooling. The relaxation rates of the atomic kinetic temperature are determined for a three-dimensional lin⊥lin optical lattice. We find that the damping rates of the atomic temperature depend linearly on the optical pumping rate, for a given depth of the potential wells. This is at variance with the behavior of the friction coefficient as calculated from the spatial diffusion coefficients within a model of Brownian motion. The origin of this different behavior is identified by distinguishing the role of the trapped and traveling atoms.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional cooling of a single atom by a pair of counter-propagating tightly focused beams

Gang Li, Pengfei Zhang, and Tiancai Zhang
Opt. Express 23(18) 23571-23581 (2015)

Sisyphus cooling of a bound atom

D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji
J. Opt. Soc. Am. B 9(1) 32-42 (1992)

Laser cooling below the Doppler limit by polarization gradients: simple theoretical models

J. Dalibard and C. Cohen-Tannoudji
J. Opt. Soc. Am. B 6(11) 2023-2045 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription