Abstract

Steering is a manifestation of quantum correlations that embodies the Einstein–Podolsky–Rosen (EPR) paradox. While there have been recent attempts to quantify steering, continuous variable systems remained elusive. We introduce a steering measure for two-mode continuous variable systems that is valid for arbitrary states. The measure is based on the violation of an optimized variance test for the EPR paradox by quadrature measurements and admits a computable and experimentally friendly lower bound only depending on the second moments of the state, which reduces to a recently proposed quantifier of steerability by Gaussian measurements. We further show that Gaussian states are extremal with respect to our measure, minimizing it among all continuous variable states with fixed second moments. As a byproduct of our analysis, we generalize and relate well-known EPR-steering criteria. Finally an operational interpretation is provided, as the proposed measure is shown to quantify a guaranteed key rate in semi-device-independent quantum key distribution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum steering for continuous-variable states

Chang-Woo Lee, Se-Wan Ji, and Hyunchul Nha
J. Opt. Soc. Am. B 30(9) 2483-2490 (2013)

Joint measurability and temporal steering

H. S. Karthik, J. Prabhu Tej, A. R. Usha Devi, and A. K. Rajagopal
J. Opt. Soc. Am. B 32(4) A34-A39 (2015)

Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

Nathan Walk, Sara Hosseini, Jiao Geng, Oliver Thearle, Jing Yan Haw, Seiji Armstrong, Syed M. Assad, Jiri Janousek, Timothy C. Ralph, Thomas Symul, Howard M. Wiseman, and Ping Koy Lam
Optica 3(6) 634-642 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription