Abstract

We present a design for shaping femtosecond laser pulses in amplitude, phase, and polarization by manipulating two perpendicular polarization components in two arms of an interferometric common-path setup. A thin-film polarizer is used for polarization splitting and recombination to avoid angular dispersion and phase variations across the beam profile. We demonstrate how the optimal design parameters can be found by numerical calculations and present an on-the-fly phase reduction and stabilization routine to automatically compress the pulse and improve the long-term stability of the setup. Examples of deterministically generated polarization-shaped multipulse sequences prove the capabilities of the setup.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet polarization pulse shaping using sum-frequency generation

Marco Thomas Seidel, Zhengyang Zhang, Suxia Yan, and Howe-Siang Tan
J. Opt. Soc. Am. B 28(5) 1146-1151 (2011)

Generation of arbitrary axisymmetrically polarized pulses by using the combination of 4-f spatial light modulator and common-path optical system

Masato Suzuki, Keisaku Yamane, Moritsugu Sakamoto, Kazuhiko Oka, Yasunori Toda, and Ryuji Morita
Opt. Express 26(3) 2584-2598 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [Crossref]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [Crossref]
  3. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
    [Crossref]
  4. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  5. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [Crossref]
  6. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [Crossref]
  7. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley-Interscience, 2000).
  8. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003).
    [Crossref]
  9. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
    [Crossref]
  10. M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, 2012).
  11. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
    [Crossref]
  12. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [Crossref]
  13. T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, “Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping,” Opt. Lett. 29, 2052–2054 (2004).
    [Crossref]
  14. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [Crossref]
  15. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
    [Crossref]
  16. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [Crossref]
  17. I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
    [Crossref]
  18. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
    [Crossref]
  19. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [Crossref]
  20. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
    [Crossref]
  21. N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
    [Crossref]
  22. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
    [Crossref]
  23. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
    [Crossref]
  24. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [Crossref]
  25. M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
    [Crossref]
  26. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).
  27. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [Crossref]
  28. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260 (2009).
    [Crossref]
  29. L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
    [Crossref]
  30. M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
    [Crossref]
  31. Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
    [Crossref]
  32. H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
    [Crossref]
  33. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
    [Crossref]
  34. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
    [Crossref]
  35. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
    [Crossref]
  36. D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
    [Crossref]
  37. M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
    [Crossref]
  38. C. T. Middleton, D. B. Strasfeld, and M. T. Zanni, “Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy,” Opt. Express 17, 14526–14533 (2009).
    [Crossref]
  39. P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
    [Crossref]
  40. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
    [Crossref]
  41. J. Vaughan, T. Feurer, K. Stone, and K. Nelson, “Analysis of replica pulses in femtosecond pulse shaping with pixelated devices,” Opt. Express 14, 1314–1328 (2006).
    [Crossref]
  42. E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
    [Crossref]
  43. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [Crossref]
  44. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
    [Crossref]
  45. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
    [Crossref]
  46. T. Brixner, “Poincaré representation of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 76, 531–540 (2003).
    [Crossref]
  47. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  48. S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
    [Crossref]
  49. F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
    [Crossref]
  50. D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
    [Crossref]
  51. P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
    [Crossref]
  52. F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
    [Crossref]
  53. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
    [Crossref]

2013 (2)

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

2012 (1)

S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
[Crossref]

2011 (3)

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

2010 (3)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[Crossref]

2009 (7)

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[Crossref]

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
[Crossref]

M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
[Crossref]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260 (2009).
[Crossref]

C. T. Middleton, D. B. Strasfeld, and M. T. Zanni, “Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy,” Opt. Express 17, 14526–14533 (2009).
[Crossref]

Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17, 19153–19159 (2009).
[Crossref]

2007 (6)

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
[Crossref]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[Crossref]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
[Crossref]

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

2006 (4)

2005 (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

2004 (4)

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, “Degenerate four-wave mixing spectroscopy based on two-dimensional femtosecond pulse shaping,” Opt. Lett. 29, 2052–2054 (2004).
[Crossref]

2003 (4)

I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

T. Brixner, “Poincaré representation of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 76, 531–540 (2003).
[Crossref]

2002 (3)

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref]

2001 (1)

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

1998 (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

1997 (2)

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
[Crossref]

1995 (3)

1988 (1)

Achazi, G.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Aït-Belkacem, D.

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Bartels, R. A.

D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
[Crossref]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
[Crossref]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Baumert, T.

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Behrndt, M.

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

Belabas, N.

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Brasselet, S.

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

Brixner, T.

S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003).
[Crossref]

T. Brixner, “Poincaré representation of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 76, 531–540 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Brumer, P.

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, 2012).

Caruso, A.

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Chériaux, G.

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Ciofini, M.

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Crozatier, V.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Dantus, M.

Dela Cruz, J.

Dorrer, C.

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref]

Esumi, Y.

Feurer, T.

Fischer, A.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Fittinghoff, D. N.

Fleming, G. R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Forget, N.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Galler, A.

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Gennari, S.

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[Crossref]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Graefe, O.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Herek, J. L.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Heritage, J. P.

Horn, C.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Hornung, T.

Joffre, M.

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
[Crossref]

Kabir, A.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Kabir, M. D.

Kambhampati, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Kanai, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Kannari, F.

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Kirschner, E. M.

Kramer, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Krampert, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

Krischke, A.

S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
[Crossref]

Krug, M.

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

Kupka, D.

D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
[Crossref]

Lepetit, L.

Liese, D.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Likforman, J.-P.

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

Lindinger, A.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[Crossref]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260 (2009).
[Crossref]

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
[Crossref]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
[Crossref]

Lozovoy, V.

Lux, C.

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

Masihzadeh, O.

Melchior, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Miao, H.

Middleton, C. T.

Miller, P. J.

Minemoto, S.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Mirkin, L.

Misawa, K.

M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
[Crossref]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Motzkus, M.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).

Nelson, K.

Nelson, K. A.

Niklaus, P.

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

Ninck, M.

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

Oliva, E.

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Oron, D.

L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref]

Pastirk, I.

Pawlowska, M.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

Pfeifer, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Pfeiffer, W.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Plewicki, M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
[Crossref]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
[Crossref]

Polachek, L.

Rice, S. A.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley-Interscience, 2000).

Rigneault, H.

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Rützel, S.

S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
[Crossref]

Saari, J. I.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Sakai, H.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Sato, M.

M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
[Crossref]

Schlup, P.

D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
[Crossref]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
[Crossref]

Schneider, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Schön, P.

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

Selle, R.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Shapiro, M.

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, 2012).

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Silberberg, Y.

L. Polachek, D. Oron, and Y. Silberberg, “Full control of the spectral polarization of ultrashort pulses,” Opt. Lett. 31, 631–633 (2006).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Smirl, A. L.

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Stone, K.

Strasfeld, D. B.

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

Strüber, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Suzuki, T.

M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Trebino, R.

Tuchscherer, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Tyagi, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Vanzi, L.

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

Vaughan, J.

Vaughan, J. C.

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

Voronine, D. V.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

Walecki, W. J.

Walowicz, K.

Walsh, B.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
[Crossref]

Weber, S. M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
[Crossref]

Wefers, M. M.

Weiner, A. M.

Weise, F.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[Crossref]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260 (2009).
[Crossref]

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
[Crossref]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359 (2006).
[Crossref]

Wohlleben, W.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Wollenhaupt, M.

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[Crossref]

C. T. Middleton, D. B. Strasfeld, and M. T. Zanni, “Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy,” Opt. Express 17, 14526–14533 (2009).
[Crossref]

Zeidler, D.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

Zhao, M.

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley-Interscience, 2000).

Appl. Opt. (1)

Appl. Phys. B (5)

M. Plewicki, S. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2006).
[Crossref]

T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002).
[Crossref]

S. Rützel, A. Krischke, and T. Brixner, “The von Neumann representation as a joint time-frequency parameterization for polarization-shaped femtosecond laser pulses,” Appl. Phys. B 107, 1–9 (2012).
[Crossref]

C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers,” Appl. Phys. B 70, S99–S107 (2000).
[Crossref]

T. Brixner, “Poincaré representation of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 76, 531–540 (2003).
[Crossref]

Astron. Astrophys. Suppl. Ser. (1)

E. Oliva, S. Gennari, L. Vanzi, A. Caruso, and M. Ciofini, “Optical materials for near infrared wollaston prisms,” Astron. Astrophys. Suppl. Ser. 123, 179–182 (1997).
[Crossref]

Chem. Phys. (1)

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[Crossref]

ChemPhysChem (2)

M. Wollenhaupt, C. Lux, M. Krug, and T. Baumert, “Tomographic reconstruction of designer free-electron wave packets,” ChemPhysChem 14, 1341–1349 (2013).
[Crossref]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem 4, 418–438 (2003).
[Crossref]

J. Opt. (1)

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

J. Phys. Chem. A (1)

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117, 6264–6269 (2013).
[Crossref]

Nature (5)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533–535 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[Crossref]

New J. Phys. (1)

D. B. Strasfeld, C. T. Middleton, and M. T. Zanni, “Mode selectivity with polarization shaping in the mid-IR,” New J. Phys. 11, 105046 (2009).
[Crossref]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

Phys. Chem. Chem. Phys. (2)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref]

Phys. Rev. A (2)

P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010).
[Crossref]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[Crossref]

Phys. Rev. Lett. (3)

N. Dudovich, D. Oron, and Y. Silberberg, “Quantum control of the angular momentum distribution in multiphoton absorption processes,” Phys. Rev. Lett. 92, 103003 (2004).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[Crossref]

Rev. Sci. Instrum. (3)

D. Kupka, P. Schlup, and R. A. Bartels, “Simplified ultrafast pulse shaper for tailored polarization states using a birefringent prism,” Rev. Sci. Instrum. 80, 053110 (2009).
[Crossref]

M. Sato, T. Suzuki, and K. Misawa, “Interferometric polarization pulse shaper stabilized by an external laser diode for arbitrary vector field shaping,” Rev. Sci. Instrum. 80, 123107 (2009).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[Crossref]

Science (3)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref]

Other (4)

M. Shapiro and P. Brumer, Quantum Control of Molecular Processes, 2nd ed. (Wiley-VCH, 2012).

S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley-Interscience, 2000).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).

Supplementary Material (3)

» Media 1: MP4 (220 KB)     
» Media 2: MP4 (46 KB)     
» Media 3: MP4 (182 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Design parameters of the setup. (a) Definitions of all relevant quantities for calculating the optimal set of parameters of the setup (see text for detailed explanation). Two beams [beam 1 (orange), beam 2 (blue)] hit the grating of a 4 f setup under two different angles of incidence Θ i 1 and Θ i 2 . Their diffracted spectral components are collimated by a cylindrical lens and mapped onto the pixels of the spatial light modulator (SLM). (b) Graphical solutions to Eq. (11a) (blue line), Eq. (11b) (red line), and Eq. (11c) (green line) for two different angles δ in . In the case of δ in = 10.76 ° , all three lines intersect at one point and all three equations are fulfilled for β = 46.57 ° and g = 892.60 mm 1 . For a slightly different value of δ in = 10.26 ° , only two of the three equations can be fulfilled.
Fig. 2.
Fig. 2. Principle of the Wollaston prism and TFP for polarization separation and recombination. (a) The Wollaston prism consists of two birefringent prisms with perpendicular optical axes. The separation of the incoming pulse (red) into a p- and s-polarized pulse (orange/blue) is based on refraction and offers a very high extinction ratio. (b) A TFP is a thin glass substrate (gray) with special coating (green) on both sides. The p-polarized component of the incoming beam (red) is transmitted (orange) and the s polarization is reflected (blue) with the given efficiencies. Multiple reflections inside the TFP lead to minor satellite pulses which are delayed by 3.6 ps. (c), (d) The back-going beams are recombined (red dotted beams) by passing the TFP a second time. The polarization states of the back-going beams determine the intensity which is emitted on both sides of the TFP. If the polarization of both beams is not changed by the SLM in the pulse shaper, the maximum intensity will be emitted on the side of the incident beam (side A) and the minimal intensity on the other side (side B) [(c)]. If the polarizations are rotated by 90°, this behavior is switched [(d)]. Due to this effect amplitude shaping is realized for each beam. Either the beam emitted at side A or B can be used as the shaped beam. The double-pass extinction ratio at side A is 43521 1 for beam 1 and 5605 1 for beam 2 [(c)] and 15619 1 for both beams at side B [(d)].
Fig. 3.
Fig. 3. Setup schematics. (a) Vector-field shaper, see text for a detailed description. The key elements to achieve vector-field control of the incoming pulse (solid red line) are a TFP to generate two perpendicularly polarized pulses and the subsequent telescope to direct them onto the grating of a 4 f setup in a common-path setup. The transmitted (beam 1, orange) and reflected (beam 2, blue) beams are shaped individually in amplitude and phase and recombined by the TFP to a single beam (red dotted line). The reference beam line (transparent) is used for pulse characterization via dual-channel FTSI. (b) Spectrometer setup. To simultaneously characterize both polarization components of the shaped pulse, two identically configured high-resolution spectrometers are employed. The polarization separation is achieved by a beam-splitter cube and two linear polarizers.
Fig. 4.
Fig. 4. Comparison of the simulated (black) and measured [orange (beam 1) and blue (beam 2)] wavelength distribution across the SLM pixels. The calibration was measured (orange and blue circles) in the range of 778–817 nm (gray dashed lines) and then extrapolated using a second-order polynomial fit (red circles). In the measured range, both beams span 83 pixels. For 740–880 nm they cover 295/293 (orange/blue) pixels. The simulation for the optimal parameters [Eq. (13)] predicts a range of 85/84 (orange/blue) pixels for 778–817 nm and 301/301 (orange/blue) pixels for 740–880 nm. For better visibility only every fifth data point is plotted.
Fig. 5.
Fig. 5. Phase stability of the setup. (a) Stability over nearly 24 h. As a quantity for the phase stability, the spectral phase difference at the center frequency between both polarizations is used. In blue, the unstabilized phase difference is shown. In green and red, the first and second iterations of an OPRAS (see text) using the pulse shaper itself are plotted. The unstabilized curve (blue) reveals a significant long-term phase drift, but good short-term stability. The inset shows a period of 60 min with a standard deviation of σ = 28.3 mrad ( λ / 222 ) . (b) By employing two iterations of OPRAS, a long-term phase stability of σ = 31.9 mrad ( λ / 197 ) over nearly 24 h (iteration 2, red) is achieved. The phase difference is reduced to a mean value of 28.5 mrad (gray line). (c) SLM temperature over the course of the measurements. Note that the small gaps in the data set arise from loading times of new measurement parameters.
Fig. 6.
Fig. 6. Characterization of the stabilized pulse via SHG FROG. (a) Measured FROG trace of the p and (b) s polarization. (c), (d) Reconstructed (red) spectrum (solid lines) and phase (circles) compared with the spectrum and phase measured via FTSI (blue) of p [(c)] and s polarization [(d)]. The FROG error is 0.26%/0.64% [(a/b)].
Fig. 7.
Fig. 7. Characterization of the stabilized pulse by rotating a linear polarizer. (a) Intensity (solid line) and phase (circles) of the p- (blue) and s-polarized (red) components in the time domain, gained by FTSI analysis. (b) Measured intensity of the pulse after a linear polarizer as a function of the polarizer angle (black crosses). The orientation of θ = 0.77 rad = 44.43 ° and the ellipticity of | ϵ | = 0.15 rad is extracted by fitting a squared sinusoidal (red). (c) Comparison of the FTSI analysis (red dots), the mean of the FTSI analysis (black dot), and the polarizer measurement (black cross) in a Poincaré plot [46].
Fig. 8.
Fig. 8. Double pulse with different orientations and ellipticities. (a), (b) Intensity (solid) and phase (circles) of the p (blue) and s polarization (red) in frequency [(a)] and time domain [(b)]. (c) Poincaré plot of the temporal ellipticity ϵ and orientation θ . The measured subpulses are shown in red circles. The color saturation is proportional to the instantaneous subpulse intensity. The target polarization states are marked with black crosses. (d) Pseudo 3D representation of the pulse sequence in the time domain. The instantaneous frequency ω ( t ) is color-coded. A scan of the orientation of the second subpulse is shown in Media 1. (e) In another example, the temporal delay between two nearly linearly polarized subpulses with an orientation of 45° is scanned (Media 2). In this frame, the delay of the first subpulse is 800 fs . (f) The relative spectral phase offset between two subpulses can also be manipulated. The p- and an s-polarized pulses are delayed by 80 fs with respect to each other and overlap therefore partially in time. Their relative phase difference in the frequency domain is Δ ϕ ( ω 0 ) = 0.49 rad . This has the effect that the orientation and ellipticity varies in the region of temporal overlap. A scan of their phase difference is presented in Media 3.
Fig. 9.
Fig. 9. Four-pulse sequences. (a), (b) Relative time delays are 200 fs, 80 fs, and again 200 fs. The overlap between subpulse 2 and 3 leads to varying ellipticity ϵ and orientation θ . The target polarization states for all four subpulses are marked with black crosses in the Poincaré plot [(a)]. The temporal evolution is visualized in a 3D representation [(b)]. (c), (d) Sequence with four subpulses with linearly s-polarized subpulses 1 and 4, while the target orientation angle of subpulses 2 and 3 is 45 ° and + 45 ° . The delay between each subsequent subpulse is 300 fs. The measured polarization states [(c), red dots] agree very well with their target states [(c), black crosses]. A clean polarization multipulse sequence is obtained [(d)].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Θ i 1 = β δ in / 2 ,
Θ i 2 = β + δ in / 2 ,
δ in = Θ i 2 Θ i 1 ,
Θ d 1 , 2 ( λ ) = arcsin ( g m λ + sin Θ i 1 , 2 ) .
Θ d , min 1 = Θ d 1 ( λ min ) , Θ d , max 1 = Θ d 1 ( λ max ) ,
Θ d , min 2 = Θ d 2 ( λ min ) , Θ d , max 2 = Θ d 2 ( λ max ) .
η = 2 arctan ( w SLM 2 f ) .
ξ = 2 arctan ( w gap 2 f ) .
Θ 4 f o.a. = Θ d , max 1 + Θ d , min 2 2 .
x SLM ( Θ d 1 , 2 ) = f tan ( Θ d 1 , 2 Θ 4 f o.a. ) .
Θ d , max 2 Θ d , min 1 = η ,
Θ d , min 2 Θ d , max 1 = ξ ,
x SLM ( Θ d , min 1 ) = x SLM ( Θ d , max 2 ) .
δ in = 10.76 ° , β = 46.57 ° , g = 892.60 mm 1 .
δ in = 10.26 ° , β = 43.73 ° , g = 850 mm 1 .

Metrics