Abstract

We report on the calculations of optical radiation scattering at micrometer-sized conical-shape dielectric particles (microaxicons) with special attention given to the specific spatially localized near-field area constituting a photonic nanojet (PNJ). By virtue of finite-difference time-domain simulations we show for the first time, to the best our knowledge, that the PNJ produced by a microaxicon of specific spatial orientation can exhibit extreme axial elongation up to 25λ (at defined intensity level) while retaining high peak intensity and subwavelength transverse width.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralong photonic nanojet formed by dielectric microtoroid structure

Baifu Zhang, Jingjing Hao, Zhe Shen, Heng Wu, Kang Zhu, Ji Xu, and Jianping Ding
Appl. Opt. 57(28) 8331-8337 (2018)

Photonic nanohelix generated by a binary spiral axicon

Sergey A. Degtyarev, Alexey P. Porfirev, and Svetlana N. Khonina
Appl. Opt. 55(12) B44-B48 (2016)

Photonic nanojets generated using square-profile microsteps

Victor V. Kotlyar, Sergey S. Stafeev, and Alexander Feldman
Appl. Opt. 53(24) 5322-5329 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription