Abstract

An ultrabroadband mid-infrared supercontinuum (SC) source has been designed and modeled using a 10-mm-long all-chalcogenide triangular-core fiber (TCF). The TCF structure can be fabricated from Ge11.5As24Se64.5 chalcogenide glass as a core and Ge11.5As24S64.5 chalcogenide glass for its cladding running along the length of the fiber instead of air holes. Assuming the pump operates at 4 μm, the TCF is optimized by varying its side length using both anomalous-dispersion and all-normal-dispersion SC generation. Mid-infrared-region SC spectral broadening spanning beyond 15 μm could be generated with a low peak power of 3 kW by the proposed TCF structure optimized with varying its side length between 7 and 8 μm in anomalous-dispersion pumping. On the other hand, the TCF side length has to be decreased to 5.5 μm and below to optimize it for pumping in all-normal-dispersion-region SC generation. A coherent flat-top SC evolution in the mid-infrared region of up to 7 μm could be observed by this design with the same pump peak power and pulse duration applied before. The ultrawide optical bandwidth obtained by the proposed TCF design can be an effective tool for mid-infrared-region applications such as optical coherence tomography, molecular fingerprint spectroscopy, and biomedical imaging.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrabroadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers

M. R. Karim, B. M. A. Rahman, Y. O. Azabi, A. Agrawal, and Govind P. Agrawal
J. Opt. Soc. Am. B 32(11) 2343-2351 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  2. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
    [Crossref]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  4. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  5. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  6. X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
    [Crossref]
  7. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  8. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
    [Crossref]
  9. C. Wei, X. Zhu, R. A. Norwood, F. Seng, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
    [Crossref]
  10. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  11. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).
  12. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
    [Crossref]
  13. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El-Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4, 1163–1166 (2017).
    [Crossref]
  14. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
    [Crossref]
  15. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref]
  16. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
    [Crossref]
  17. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
    [Crossref]
  18. C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
    [Crossref]
  19. A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide nanowires,” Opt. Lett. 40, 4687–4690 (2015).
    [Crossref]
  20. B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
    [Crossref]
  21. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  22. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
    [Crossref]
  23. Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
    [Crossref]
  24. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
    [Crossref]
  25. M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
    [Crossref]
  26. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15  μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33, 3914–3920 (2015).
    [Crossref]
  27. I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref]
  28. M. R. Karim, B. M. A. Rahman, Y. O. Azabi, A. Agrawal, and G. P. Agrawal, “Ultra-broadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers,” J. Opt. Soc. Am. B 32, 2343–2351 (2015).
    [Crossref]
  29. M. R. Karim, H. Ahmad, and B. M. A. Rahman, “All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region,” IEEE J. Quantum Electron. 53, 7100106 (2017).
    [Crossref]
  30. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
    [Crossref]
  31. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [Crossref]
  32. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1 m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010).
    [Crossref]
  33. Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
    [Crossref]
  34. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
    [Crossref]
  35. M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: a parametric study,” Opt. Express 22, 31029–31040 (2014).
    [Crossref]
  36. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  37. M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48, 174 (2016).
    [Crossref]
  38. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
    [Crossref]
  39. A. B. Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proceedings of PIERS, Morocco, 2011, p. 1256.
  40. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
    [Crossref]
  41. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100-fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
    [Crossref]
  42. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [Crossref]
  43. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [Crossref]
  44. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3778 (2011).
    [Crossref]
  45. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
    [Crossref]
  46. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
    [Crossref]
  47. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
    [Crossref]

2017 (4)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El-Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4, 1163–1166 (2017).
[Crossref]

M. R. Karim, H. Ahmad, and B. M. A. Rahman, “All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region,” IEEE J. Quantum Electron. 53, 7100106 (2017).
[Crossref]

2016 (9)

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48, 174 (2016).
[Crossref]

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100-fs solitons tunable from 2 to 4.3  μm in fluoride fiber,” Optica 3, 948–951 (2016).
[Crossref]

2015 (7)

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15  μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33, 3914–3920 (2015).
[Crossref]

A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide nanowires,” Opt. Lett. 40, 4687–4690 (2015).
[Crossref]

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

M. R. Karim, B. M. A. Rahman, Y. O. Azabi, A. Agrawal, and G. P. Agrawal, “Ultra-broadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers,” J. Opt. Soc. Am. B 32, 2343–2351 (2015).
[Crossref]

2014 (8)

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: a parametric study,” Opt. Express 22, 31029–31040 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

2013 (3)

2012 (1)

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

2011 (4)

2010 (3)

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

2003 (1)

2002 (1)

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

Abdel-Moneim, M.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agger, C. S.

Agrawal, A.

Agrawal, G. P.

Ahmad, H.

M. R. Karim, H. Ahmad, and B. M. A. Rahman, “All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region,” IEEE J. Quantum Electron. 53, 7100106 (2017).
[Crossref]

Alamgir, I.

Al-Kadry, A.

Amraoui, M. E.

Antipov, S.

Azabi, Y. O.

Bang, O.

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref]

Bartelt, H.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Benson, T. M.

Bookey, H.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Bosman, G. W.

Brilland, L.

Buczynski, R.

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Bulla, D.

Caillaud, C.

Charan, K.

Cheng, T.

Cherif, R.

A. B. Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proceedings of PIERS, Morocco, 2011, p. 1256.

Choi, D.

Choi, D. Y.

Coen, S.

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

Debbarma, S.

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

Dudley, J. M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

El-Amraoui, M.

Engelsholm, R. D.

Falk, P.

Farries, M.

Finot, C.

Frosz, M. H.

Fuerbach, A.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gai, X.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1 m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Gu, X.

Guo, W.

Guo, Z.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Haensch, T. W.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Han, T.

Hartung, A.

Heidt, A. M.

Hooper, L. E.

Hu, T.

Hudson, D. D.

Jackson, S. D.

Kang, S.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Kang, X.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Kar, A. K.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Karim, M. R.

Kibler, B.

Kimmel, M.

Klimczak, M.

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Knight, J. C.

Krok, P.

Kubat, I.

Kumar, A.

Kumar, V. V. R. K.

Lamrini, S.

Li, L.

Liu, L.

Liu, S.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1 m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

Ma, P.

Madden, S.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1 m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

Madden, S. J.

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

Markos, C.

Matsumoto, M.

Mechin, D.

Messaddeq, Y.

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Møller, U.

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moselund, P. M.

Mosley, P. J.

Muir, A. C.

Nagasaka, K.

Napier, B.

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

North, T.

Norwood, R. A.

Ohishi, Y.

Omenetto, F. G.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Petersen, C.

Petersen, C. R.

Peyghambarian, N.

Picque, N.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Prasad, A.

Provost, L.

Pysz, D.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Qi, S.

Qin, G.

Rahman, B. M. A.

M. R. Karim, H. Ahmad, and B. M. A. Rahman, “All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region,” IEEE J. Quantum Electron. 53, 7100106 (2017).
[Crossref]

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48, 174 (2016).
[Crossref]

M. R. Karim, B. M. A. Rahman, Y. O. Azabi, A. Agrawal, and G. P. Agrawal, “Ultra-broadband mid-infrared supercontinuum generation through dispersion engineering of chalcogenide microstructured fibers,” J. Opt. Soc. Am. B 32, 2343–2351 (2015).
[Crossref]

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
[Crossref]

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: a parametric study,” Opt. Express 22, 31029–31040 (2014).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682–688 (1984).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Reeves, W. H.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Rochette, M.

Rohwer, E. G.

Russell, P. St. J.

Saini, T. S.

Salem, A. B.

A. B. Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proceedings of PIERS, Morocco, 2011, p. 1256.

Sang, X.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Scholle, K.

Schwoerer, H.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Seddon, A. B.

Seng, F.

Shen, X.

Shreenath, A. P.

Sinha, R. K.

Siwicki, B.

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Stepien, R.

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Stepniewski, G.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

Sun, L.

Suzuki, T.

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Taghizadeh, M. R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Tang, Y.

Tang, Z.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Taylor, A. J.

Tezuka, H.

Tong, H.

Trebino, R.

Troles, J.

Tuan, T. H.

Vu, K.

Wabnitz, S.

Waddie, A. J.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Wadsworth, W. J.

Wang, K.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4, 1011–1022 (2014).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

Wang, T.

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Ward, J.

Wei, C.

Wei, W.

Windeler, R. S.

Wise, F. W.

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Wright, L. G.

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Xu, C.

Xue, X.

Yan, B.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Yang, Z.

Yu, C.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

Yuan, J.

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Zghal, M.

A. B. Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proceedings of PIERS, Morocco, 2011, p. 1256.

Zhai, C.

Zhang, B.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhu, X.

IEEE J. Quantum Electron. (1)

M. R. Karim, H. Ahmad, and B. M. A. Rahman, “All-normal-dispersion chalcogenide waveguides for ultraflat supercontinuum generation in the mid-infrared region,” IEEE J. Quantum Electron. 53, 7100106 (2017).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (2)

Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 1–7 (2014).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2–16  μm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 2, 1700005 (2017).

Laser Phys. Lett. (1)

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300  nm,” Laser Phys. Lett. 11, 055103 (2014).
[Crossref]

Nat. Photonics (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Express (17)

X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Seng, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref]

C. R. Petersen, P. M. Moselund, C. Petersen, U. Møller, and O. Bang, “Spectral-temporal composition matters when cascading supercontinua into the mid-infrared,” Opt. Express 24, 749–758 (2016).
[Crossref]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: a parametric study,” Opt. Express 22, 31029–31040 (2014).
[Crossref]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136  W−1 m−1 at 1550  nm,” Opt. Express 18, 18866–18874 (2010).
[Crossref]

I. Kubat, C. R. Petersen, U. Møller, A. Seddon, T. Benson, L. Brilland, D. Mechin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5  μm in large NA chalcogenide step-index fibres pumped at 4.5  μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref]

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3778 (2011).
[Crossref]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
[Crossref]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19, 4902–4907 (2011).
[Crossref]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref]

Opt. Fiber Technol. (1)

B. Siwicki, M. Klimczak, R. Stepien, and R. Buczynski, “Supercontinuum generation enhancement in all-solid all-normal dispersion soft glass photonic crystal fiber pumped at 1550  nm,” Opt. Fiber Technol. 25, 64–71 (2015).
[Crossref]

Opt. Lett. (6)

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10  μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5–14  μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41, 5222–5225 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, and B. Luther-Davies, “1.8–10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40, 1081–1084 (2015).
[Crossref]

A. Al-Kadry, L. Li, M. E. Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide nanowires,” Opt. Lett. 40, 4687–4690 (2015).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2 to 15.1  μm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

M. R. Karim and B. M. A. Rahman, “Ultra-broadband mid-infrared supercontinuum generation using chalcogenide rib waveguide,” Opt. Quantum Electron. 48, 174 (2016).
[Crossref]

Optica (2)

Prog. Electromagn. Res. (1)

Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber,” Prog. Electromagn. Res. 48, 67–76 (2016).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (2)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 6057 (2014).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5  μm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6, 39138 (2016).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. B. Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proceedings of PIERS, Morocco, 2011, p. 1256.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Triangular-core-fiber geometry.
Fig. 2.
Fig. 2. GVD curves optimized for the TCF geometry shown in Fig. 1 with the variation of its side length a for pump employing in the (a) anomalous-dispersion region and (b) normal-dispersion region. The inset of (a) shows the fundamental mode profile ( H x 11 ) for the TCF structure containing side length of 8 μm at pump wavelength. The vertical dashed line indicates pump wavelength.
Fig. 3.
Fig. 3. (a) Mode effective areas and their corresponding nonlinearities over a wide wavelength range for the TCF structure containing side length of 8 μm. (b) Confinement losses are calculated for the TCF side lengths of 4.5, 7, and 8 μm.
Fig. 4.
Fig. 4. Anomalous dispersion SC spectra (top row), spectral density (middle row), and spectrogram (bottom row) represent the TCF structure with triangle side length of 7 μm (left column), 7.5 μm (middle column), and 8 μm (right column), respectively.
Fig. 5.
Fig. 5. Output SC spectra obtained with the variation of pulse duration for the TCF structure having side length of 8 μm with a largest peak power of 3 kW.
Fig. 6.
Fig. 6. (a) The confinement factor (power in core/total input power), and (b) the SC output spectra considering 2.5 dB linear loss during simulations for the TCF structure containing side length between 7 μm and 8 μm.
Fig. 7.
Fig. 7. SC output spectra after the pulse propagation of (a) 5 cm, (b) 10 cm, and their corresponding spectral density after (c) 5 cm, (d) 10 cm of propagation for the TCF structure having side length of 8 μm.
Fig. 8.
Fig. 8. Comparison of SC output spectrum (a) with and without TPA; (b) using single- and dual-peak Lorentz function values.
Fig. 9.
Fig. 9. All-normal-dispersion SC spectra (top row), spectral density (middle row), spectrogram (bottom row) represent the TCF structure with triangle side length of 5.5 μm (left column), 5 μm (middle column), and 4.5 μm (right column), respectively.
Fig. 10.
Fig. 10. First-order coherence simulated over the entire SC bandwidth for the TCF geometry containing side length a = 5.5    μm corresponding to Figs. 9(a), 9(d), and 9(g) (entire left column), respectively.

Tables (1)

Tables Icon

Table 1. Sellmeier Coefficients

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = 1 + j = 1 m A j λ 2 λ 2 λ j 2 ,
ω 2 = [ ( × H ) * · ϵ ^ 1 ( × H ) + p ( · H ) * ( · H ) ] d x d y H * · μ ^ H d x d y ,
GVD ( λ ) = λ c d 2 Re ( n eff ) d λ 2 ,
z A ( z , T ) + α 2 A r 2 14 i r + 1 r ! β r r A T r = i ( γ + i α 2 2 A eff ) ( 1 + i ω 0 T ) × ( A ( z , T ) R ( T ) | A ( z , T T ) | 2 d T ) .
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) .
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
| g 12 ( 1 ) ( λ ) | = E 1 * ( λ ) E 2 ( λ ) | E 1 ( λ ) | 2 | E 2 ( λ ) | 2 ,

Metrics