IR
${\rm{sech}}^2$
pulse intensity envelope, where
${\tau _{\rm laser}}\cdot1.76$
corresponds to the FWHM pulse duration |
$ {I_{{\rm{IR}}}}(t) = {{\mathop{\rm sech}\nolimits} ^2}( {\frac{t}{{{\tau _{{\rm{laser}}}}}}} ) $
| |
Driving THz field, defined by second derivative of the driving pulse intensity envelope
$ I_{\rm IR}$
with respect to time |
$ {E_{{{0}}\,{\rm{THz}}}}(\omega ) = {\cal F}( {\frac{{{d^2}{I_{{\rm{IR}}}}(t)}}{{d{t^2}}}} )(\omega ) $
| [33] |
Sellmeier equation for refractive index of GaP |
$ n_{{\rm{THz}}}^2 = 1 + \frac{{{B_{{1}}}\,{\lambda ^2}}}{{{\lambda ^2} - \lambda _1^2}} + \frac{{{B_2}\,{\lambda ^2}}}{{{\lambda ^2} - \lambda _2^2}}$
, | [19] |
|
$B_1 = 2.064,\lambda _1 = 27.284 \,{\unicode{x00B5}{\rm m}}$
, | |
|
${B_2} = 8.089$
,
${\lambda _2} = 0.2707\,\,{\unicode{x00B5}{\rm m}}$
| |
PM condition for group velocity of the IR pulse and THz radiation phase velocity, where
${d_{\rm crystal}}$
determines thickness of the GaP crystal |
$ {\rm{PM}}(\omega ) = \frac{{{e^{i\omega \delta (\omega )}} - 1}}{{i\omega \delta (\omega )}}$
,
$ \delta(\omega) = \frac{{{n_{\rm{g}}}({\lambda _0}) - {n_{{\rm{THz}}}}(\omega )}}{{{c_{{\rm{light}}}}}}{d_{{\rm{crystal}}}}$
,
${n_{\rm{g}}}(1.03\,\;{\unicode{x00B5}\rm m}) = 3.31$
| [28] |
EOS response, determined byintensity envelope spectrum of the probing IR pulse |
$ {\rm{EOS}}(\omega ) = {\cal F}( {{I_{{\rm{IR}}}}(t)} )(\omega ) $
| [34] |
GaP absorption coefficient |
$ k(\omega ) = {\mathop{\rm Im}\nolimits} \left( {{\varepsilon _{{\rm{el}}}} + \frac{{{{\rm{S}}_{{0}}}\,\omega _0^2}}{{\omega _0^2 - {\omega ^2} - i{\Lambda _0}\omega }}} \right)$
, | [35] |
|
${\varepsilon _{{\rm{el}}}} = 8.7$
,
${S_0} = 1.8$
, | |
|
${\Lambda _0} = 0.126 \cdot {10^{12}}\,\,{\rm{rad/s}}$
, | |
|
$\omega _0 = 69\cdot{10^{12}}\,\,{\rm{rad/s}}$
| |
GaP transmission, based on Fresnel reflection and material absorption, where
${d_{\rm crystal}}$
determines thickness of the GaP crystal |
${t_{{\rm{GaP}}}}(\omega ) = \frac{2}{{{n_{{\rm{THz}}}}(\omega ) + 1}}\cdot{e^{ - k \frac{{\omega \cdot{d_{{\rm{crystal}}}}}}{{{c_{{\rm{light}}}}}}}} $
| |
Electro-optic coefficient
$r_41$
of GaP |
${r_{41}}(\omega ) = {d_{\rm{E}}}\left( {1 + \frac{{{C_0}\,\omega _0^2}}{{\omega _0^2 - {\omega ^2} - i{\Lambda _0}\omega }}} \right)$
, | [35] |
|
${d_{\rm{E}}= 10^{ - 12}}\,\,{\rm{m/V}}$
,
${C_0} = - {{0.53}}$
, | |
|
${\Lambda _0} = 0.126\cdot{10^{12}}\,\,{\rm{rad/s,}}$
, | |
|
${\omega _0} = 69 \cdot{10^{12}}\,\,{\rm{rad/s}}$
| |
Overall THz field estimate |
${E_{{\rm{THz}}}} = {E_{{{0}}\,{\rm{THz}}}} \cdot {{\rm{PM}}_{{\rm{Det}}}} \cdot {{\rm{PM}}_{{\rm{Gen}}}} \cdot {\rm{EOS}} \cdot {t_{{\rm{GaP}}}} \cdot{r_{41}}$
|
Dependence of THz average power on angle
$\theta $
of
$\langle 110 \rangle $
-cut GaP crystal with respect to laser polarization |
$ P( \theta ) \propto {\sin ^2}( {2\theta } ) + {\sin ^4}( \theta ) $
| [33] |