Abstract

The neodymium-doped optical fiber operated at 1.1 μm is a very promising material for the solar-pumped laser without concentrator because of its strong absorption bands in the visible region and its extremely low optical losses. It is generally considered a true four-level system owing to the large energy gap of the lower level of the laser transition to the ground level. In this study, the exquisitely small thermally excited population in the I11/24 Stark level is shown to be primarily responsible for the absorption losses at the laser wavelength at room temperature. Thanks to its long geometry, the absorption cross section and linestrength of the laser transition could be directly measured, allowing easier estimation of the emission cross section than with usual methods relying on fluorescence decay time and quantum efficiency measurements, or a Judd–Ofelt analysis. Our measurements are corroborated by McCumber’s reciprocity principle. The small-signal gain spectrum measured in an amplifier experiment matches well with the emission cross section. Order-of-magnitude loss reduction is demonstrated by lowering the temperature to 34°C, implying substantial reduction of the laser oscillation threshold in cold solar-pumping environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct measurements of the terminal laser level lifetime in neodymium-doped crystals and glasses

Camille Bibeau, Stephen A. Payne, and Howard T. Powell
J. Opt. Soc. Am. B 12(10) 1981-1992 (1995)

Spectroscopic study and Judd–Ofelt analysis of Pr3+-doped Zr–Ba–La–Al glasses in visible spectral range

Melinda Olivier, Jean-Louis Doualan, Virginie Nazabal, Patrice Camy, and Jean-Luc Adam
J. Opt. Soc. Am. B 30(8) 2032-2042 (2013)

Raman, green and infrared emission cross-sectionsof Er3+ doped TZPPN tellurite glass

K. Damak, E. Yousef, S. AlFaify, C. Rüssel, and R. Maâlej
Opt. Mater. Express 4(4) 597-612 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
    [Crossref]
  2. T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
    [Crossref]
  3. Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
    [Crossref]
  4. T. Masuda, M. Iyoda, Y. Yasumatsu, and M. Endo, “Low concentrated solar-pumped laser via transverse excitation fiber-laser geometry,” Opt. Lett. 42, 3427–3430 (2017).
    [Crossref]
  5. M. Endo and J.-F. Bisson, “Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp,” Jpn. J. Appl. Phys. 51, 022701 (2012).
    [Crossref]
  6. J. Nillson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
    [Crossref]
  7. M. M. Mann and L. G. De Shazer, “Energy levels and spectral broadening of neodymium ion in laser glass,” J. Appl. Phys. 41, 2951–2957 (1970).
    [Crossref]
  8. W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. 10, 450–457 (1974).
    [Crossref]
  9. R. R. Jacobs and M. J. Weber, “Dependence of the F3/24->I11/24 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 102–111 (1976).
    [Crossref]
  10. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [Crossref]
  11. L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (Elsevier, 1976), pp. 89–159.
  12. M. A. Noginov, “Reabsorption trapping of luminescence in laser crystals: enhancement of energy storage and upconversion,” Appl. Opt. 36, 4153–4158 (1997).
    [Crossref]
  13. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991).
    [Crossref]
  14. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  15. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  16. B. M. W. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), Chap. 21.
  17. W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154–2165 (1962).
    [Crossref]
  18. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
    [Crossref]
  19. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [Crossref]
  20. R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
    [Crossref]
  21. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
    [Crossref]
  22. R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23, 1770–1775 (2006).
    [Crossref]
  23. A. Einstein, “Zur quanten theorie der strahlung,” Phys. Zeit. 18, 121–128 (1917) (in German).
  24. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [Crossref]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  26. W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
    [Crossref]
  27. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32, 1908–1910(2007).
    [Crossref]
  28. G. Toci, “Lifetime measurements with the pinhole method in the presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106, 66–71 (2012).
    [Crossref]

2017 (1)

2014 (2)

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

2012 (2)

M. Endo and J.-F. Bisson, “Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp,” Jpn. J. Appl. Phys. 51, 022701 (2012).
[Crossref]

G. Toci, “Lifetime measurements with the pinhole method in the presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106, 66–71 (2012).
[Crossref]

2011 (1)

J. Nillson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

2007 (1)

2006 (2)

R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23, 1770–1775 (2006).
[Crossref]

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

2002 (2)

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

1997 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

1991 (1)

1986 (1)

1976 (1)

R. R. Jacobs and M. J. Weber, “Dependence of the F3/24->I11/24 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 102–111 (1976).
[Crossref]

1974 (1)

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. 10, 450–457 (1974).
[Crossref]

1970 (1)

M. M. Mann and L. G. De Shazer, “Energy levels and spectral broadening of neodymium ion in laser glass,” J. Appl. Phys. 41, 2951–2957 (1970).
[Crossref]

1965 (2)

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

1962 (3)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154–2165 (1962).
[Crossref]

1917 (1)

A. Einstein, “Zur quanten theorie der strahlung,” Phys. Zeit. 18, 121–128 (1917) (in German).

Baasandash, C.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Bisson, J.-F.

M. Endo and J.-F. Bisson, “Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp,” Jpn. J. Appl. Phys. 51, 022701 (2012).
[Crossref]

Caird, J. A.

Carnall, W. T.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

De Shazer, L. G.

M. M. Mann and L. G. De Shazer, “Energy levels and spectral broadening of neodymium ion in laser glass,” J. Appl. Phys. 41, 2951–2957 (1970).
[Crossref]

Dexter, D. L.

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154–2165 (1962).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Digonnet, M. J. F.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
[Crossref]

Einstein, A.

A. Einstein, “Zur quanten theorie der strahlung,” Phys. Zeit. 18, 121–128 (1917) (in German).

Endo, M.

T. Masuda, M. Iyoda, Y. Yasumatsu, and M. Endo, “Low concentrated solar-pumped laser via transverse excitation fiber-laser geometry,” Opt. Lett. 42, 3427–3430 (2017).
[Crossref]

M. Endo and J.-F. Bisson, “Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp,” Jpn. J. Appl. Phys. 51, 022701 (2012).
[Crossref]

Falquier, D. G.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[Crossref]

Fowler, W. B.

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154–2165 (1962).
[Crossref]

Fredrich-Thornton, S. T.

Hasegawa, K.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Ichikawa, T.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Ichiki, A.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Iida, Y.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Iizuka, H.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Ikuta, K.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Ito, H.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Iyoda, M.

Jacobs, R. R.

R. R. Jacobs and M. J. Weber, “Dependence of the F3/24->I11/24 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 102–111 (1976).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kajino, T.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Karita, T.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Kränkel, C.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. 10, 450–457 (1974).
[Crossref]

Kühn, H.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Malitson, I. H.

Mann, M. M.

M. M. Mann and L. G. De Shazer, “Energy levels and spectral broadening of neodymium ion in laser glass,” J. Appl. Phys. 41, 2951–2957 (1970).
[Crossref]

Martin, R. M.

Masuda, T.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Mizuno, S.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Mohamed, M. S.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Mori, Y.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Motohiro, T.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Moulton, P. F.

Murphy-Chutorian, E.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
[Crossref]

Nakamura, K.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Nillson, J.

J. Nillson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

Nishikawa, Y.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Noginov, M. A.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Ogata, Y.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Payne, D. N.

J. Nillson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Petermann, K.

Peters, R.

Quimby, R. S.

R. M. Martin and R. S. Quimby, “Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses,” J. Opt. Soc. Am. B 23, 1770–1775 (2006).
[Crossref]

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

Ramponi, A. J.

Riseberg, L. A.

L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (Elsevier, 1976), pp. 89–159.

Saiki, T.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Sakurai, Y.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Satoh, Y.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Staver, P. R.

Takeda, Y.

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

Taniguchi, S.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

Toci, G.

G. Toci, “Lifetime measurements with the pinhole method in the presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106, 66–71 (2012).
[Crossref]

Tuji, M.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Uchida, S.

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Walsh, B. M. W.

B. M. W. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), Chap. 21.

Weber, M. J.

R. R. Jacobs and M. J. Weber, “Dependence of the F3/24->I11/24 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 102–111 (1976).
[Crossref]

L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (Elsevier, 1976), pp. 89–159.

Wybourne, B. G.

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[Crossref]

Yabe, T.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Yasumatsu, Y.

Yoshida, K.

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Toci, “Lifetime measurements with the pinhole method in the presence of radiation trapping: I—theoretical model,” Appl. Phys. B 106, 66–71 (2012).
[Crossref]

Appl. Phys. Lett. (1)

T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M. S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, and Y. Satoh, “Demonstrated fossil-fuel-free energy cycle using magnesium and laser,” Appl. Phys. Lett. 89, 261107 (2006).
[Crossref]

IEEE J. Quantum Electron. (4)

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. 10, 450–457 (1974).
[Crossref]

R. R. Jacobs and M. J. Weber, “Dependence of the F3/24->I11/24 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron. 12, 102–111 (1976).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002).
[Crossref]

Int. J. Sustainable Green Energy (1)

T. Saiki, S. Uchida, T. Karita, K. Nakamura, Y. Nishikawa, S. Taniguchi, and Y. Iida, “Recyclable metal air fuel cells using sintered magnesium paste with reduced mg nanoparticles by high-repetitive ns pulse laser ablation in liquid,” Int. J. Sustainable Green Energy 3, 143–149 (2014).
[Crossref]

J. Appl. Phys. (4)

Y. Takeda, H. Iizuka, S. Mizuno, K. Hasegawa, T. Ichikawa, H. Ito, T. Kajino, A. Ichiki, and T. Motohiro, “Silicon photovoltaic cells coupled with solar-pumped fiber lasers emitting at 1064  nm,” J. Appl. Phys. 116, 014501 (2014).
[Crossref]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratio, cross-sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002).
[Crossref]

M. M. Mann and L. G. De Shazer, “Energy levels and spectral broadening of neodymium ion in laser glass,” J. Appl. Phys. 41, 2951–2957 (1970).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and B. G. Wybourne, “Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, Yb3+,” J. Chem. Phys. 42, 3797–3806 (1965).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

M. Endo and J.-F. Bisson, “Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp,” Jpn. J. Appl. Phys. 51, 022701 (2012).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (3)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

W. B. Fowler and D. L. Dexter, “Relation between absorption and emission probabilities in luminescent centers in ionic solids,” Phys. Rev. 128, 2154–2165 (1962).
[Crossref]

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[Crossref]

Phys. Zeit. (1)

A. Einstein, “Zur quanten theorie der strahlung,” Phys. Zeit. 18, 121–128 (1917) (in German).

Science (1)

J. Nillson and D. N. Payne, “High-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

Other (2)

L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics XIV, E. Wolf, ed. (Elsevier, 1976), pp. 89–159.

B. M. W. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing (Springer, 2006), Chap. 21.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Absorption spectrum of the laser transition measured at room temperature, obtained with Eq. (1a). Raw and filtered measurements in green and red, respectively. Corresponding transmission spectra of the SLED, obtained with short and long fibers, are shown in the inset.
Fig. 2.
Fig. 2. Absorption spectrum measured at various temperatures ranging from 34 ° C (bottom) to 50°C (top) by 12°C steps (solid lines). Absorption increases with temperature. The black dashed curve is the absorption spectrum measured at 23°C, used as a baseline to calculate other absorption spectra. The dotted line is the estimated background losses.
Fig. 3.
Fig. 3. Evolution of the peak absorption value as a function of temperature.
Fig. 4.
Fig. 4. Measured effective absorption (green) and emission (red) cross sections of the F 3 / 2 4 - I 11 / 2 4 laser transition band of Nd 3 + -doped aluminosilicate optical fiber. The blue curve is deduced from the emission cross section using McCumber’s principle.
Fig. 5.
Fig. 5. Effective cross section ratio (thick curve) versus wavenumber showing the simple exponential dependence between both quantities. The wavelength interval shown is from 1010 (right) to 1136 nm (left). The model of Eq. (17) is shown as a straight line (dashed).
Fig. 6.
Fig. 6. Experimental differential gain per unit length of Nd-doped fiber observed with and without illumination from an Xe lamp at room temperature (red solid line) and 37 ° C (green dashed line), and comparison with σ e obtained from linestrength measurements and the luminescence spectrum (blue dotted line).
Fig. 7.
Fig. 7. Absorption spectrum of the optical fiber. Solid: obtained from 4- to 22-mm-long fiber; dashed: obtained from 4- to 12-mm-long fiber. The latter was used only to estimate absorption from the G 5 / 2 4 - G 7 / 2 2 bands. The initial level is I 9 / 2 4 for all bands except for band 1, shown in the insert, for which the initial level is I 11 / 2 4 .
Fig. 8.
Fig. 8. Experimental decay times obtained for different lengths of active fiber with Si (circles) and Ge (stars) detectors.
Fig. 9.
Fig. 9. Comparison of the stimulated emission cross section distributions measured with Füchtbauer–Ladenburg relation (blue dotted line), McCumber reciprocity principle (green dashed line), and direct gain measurements (red solid line). The maximum measured gain value is less prominent and blueshifted relative to that predicted from Füchtbauer–Ladenburg but conforms to McCumber’s estimate.
Fig. 10.
Fig. 10. Calculated gain as a function of wavelength for various values of excited population at T = 296 K . Results are shown, from bottom to top, for N 2 / N Nd = 0 , 10, 20, …, 60 ppm. Positive gain threshold is reached for N 2 / N Nd 20 ppm at λ laser 1100 nm .
Fig. 11.
Fig. 11. Calculated gain as a function of wavelength for various values of excited population at 240 K ( 33 ° C ). Results are shown, from bottom to top, for N 2 / N Nd = 0 , 10, 20,…, 60 ppm (solid line) and 11 and 12 ppm (dashed line). Positive gain threshold is N 2 / N Nd 11 ppm . Laser emission occurs at a wavelength close to the maximum of the emission cross section of λ laser = 1064 nm .

Tables (3)

Tables Icon

Table 1. Energy Levels of Nd 3 + in Silicate Glass (taken from [7])

Tables Icon

Table 2. Integrated Cross Section and Linestrength Measurement a

Tables Icon

Table 3. Calculated Transition Probabilities and Branching Ratios from F 3 / 2 4 Metastable Level a

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = ln ( T λ ( L 1 ) T λ ( L 2 ) ) / ( L 2 L 1 ) .
δ α ( λ ) = ln ( T λ ( T ref ) T λ ( T ) ) / L ,
N 1 N Nd = i = 1 6 exp ( E 1 i / k B T ) i = 1 6 exp ( E 1 i / k B T ) + i = 1 5 exp ( E 0 i / k B T ) ,
σ a = α Nd / N 1 .
B 12 = B 21 B ,
A 21 = 8 π h v 12 3 c 3 B ,
band σ a ( λ ) d λ = 2 π 2 e 2 λ 0 3 c ε 0 h ( 2 J + 1 ) n [ ( n 2 + 2 ) 2 9 ] S F 3 / 2 4 I 11 / 2 4 ,
A F 3 / 2 4 I 11 / 2 4 = 16 π 3 e 2 3 ε 0 h ( 2 J + 1 ) λ 0 3 n [ ( n 2 + 2 ) 2 9 ] S F 3 / 2 4 I 11 / 2 4 ,
A F 3 / 2 4 I 11 / 2 4 = ( 2 J + 1 2 J + 1 ) 8 π c n 2 λ 0 4 band σ a ( λ ) d λ .
σ e ( λ ) = 1 τ rad λ 4 8 π n 2 c g ( λ ) ,
A F 3 / 2 4 I 11 / 2 4 = β F 3 / 2 4 I 11 / 2 4 τ rad ,
σ e ( λ ) = A F 3 / 2 4 I 11 / 2 4 λ 4 8 π n 2 c g I 11 / 2 4 ( λ ) ,
γ ( λ ) = N 2 σ e ( λ ) N 1 σ a ( λ ) α BG ( λ ) .
σ a ( λ ) = i = 1 6 j = 1 2 σ i j ( λ ) exp ( ( E 1 i E 11 ) / k B T ) Z 1 ,
σ e ( λ ) = i = 1 6 j = 1 2 σ i j ( λ ) exp ( ( E 2 j E 21 ) / k B T ) Z 2 ,
Z 1 = i = 1 6 exp ( ( E 1 i E 11 ) / k B T ) ,
Z 2 = j = 1 2 exp ( ( E 2 j E 21 ) / k B T ) ,
σ a ( λ ) σ e ( λ ) = Z 2 Z 1 i = 1 6 j = 1 2 σ i j ( λ ) exp ( ( E 1 i E 11 ) / k B T ) i = 1 6 j = 1 2 σ i j ( λ ) exp ( ( E 2 j E 21 ) / k B T ) .
exp ( ( E 1 i E 11 ) k B T ) exp ( ( E 2 j E 21 ) k B T ) exp ( ( E Z L h v ) / k B T ) ,
σ a ( λ ) σ e ( λ ) Z 2 Z 1 exp ( ( h c λ E Z L ) k B T ) ,
γ ( λ ) = ln ( T λ 1 T λ 2 ) / L ,
S i = Ω 2 [ U ( 2 ) ] i 2 + Ω 4 [ U ( 4 ) ] i 2 + Ω 6 [ U ( 6 ) ] i 2 ,
E σ a = σ e = E Z L + k B T ln ( Z 1 Z 2 ) 9559 cm 1 ,
Δ γ ( λ ) = Δ N 2 σ e ( λ ) .

Metrics