Abstract

Selection of parameters (e.g., the probability of choosing an X-basis or Z-basis, the intensity of signal state and decoy state, etc.) and system calibrating are more challenging when the number of users of a measurement-device-independent quantum key distribution (MDI-QKD) network increases. At present, optimization algorithms are usually employed when searching for the best parameters. This method can find the optimized parameters accurately, but it may take a lot of time and hardware resources. This is a big problem in a large-scale MDI-QKD network. Here, we present, to the best of our knowledge, a new method, using a back propagation artificial neural network (BPNN) to predict, rather than search, the optimized parameters. Compared to optimization algorithms, our BPNN is faster and more lightweight, and it can save system resources. Another big problem brought by large-scale MDI-QKD networks is system recalibration. BPNN can support this work in real time, and it only needs to use some discarded data generated from the communication process, rather than adding additional devices or scanning the system.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration

Hongwei Liu, Jipeng Wang, Haiqiang Ma, and Shihai Sun
Optica 5(8) 902-909 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription