Abstract

A general method to study the birefringence induced under laser pumping is presented. The method was tested on an Nd:Phosphate glass sample that is transversally and inhomogeneously pumped by a pulsed laser diode. Measurements to resolve the spatial and temporal stress-induced birefringence distribution are compared to a numerical model simulating the experimental setup. A quantitative agreement between measurement and simulation was found, showing that unmeasurable physical processes can be known in general cases. To compare the measurement and the simulation, a new formalism to extract the induced birefringence from initial and total birefringence measurement is presented.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally induced birefringence in Nd:YAG slab lasers

Martin Ostermeyer, Damien Mudge, Peter J. Veitch, and Jesper Munch
Appl. Opt. 45(21) 5368-5376 (2006)

Jones calculus modeling and analysis of the thermal distortion in a Ti:sapphire laser amplifier

Seryeyohan Cho, Jihoon Jeong, and Tae Jun Yu
Opt. Express 24(13) 14362-14373 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
    [Crossref]
  2. J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys. Conf. Ser. 244, 032017 (2010).
    [Crossref]
  3. P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).
  4. P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
    [Crossref]
  5. D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
    [Crossref]
  6. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
    [Crossref]
  7. J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
    [Crossref]
  8. O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
    [Crossref]
  9. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  10. A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
    [Crossref]
  11. J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
    [Crossref]
  12. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
    [Crossref]
  13. L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
    [Crossref]
  14. R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
    [Crossref]
  15. Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
    [Crossref]
  16. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
    [Crossref]
  17. O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
    [Crossref]
  18. C. C. Montarou, T. K. Gaylor, B. L. Bachim, A. I. Dachevski, and A. Agarwal, “Two-wave-plate compensator method for full-field retardation measurements,” Appl. Opt. 45, 271–280 (2006).
    [Crossref]
  19. C. C. Montarou and T. K. Gaylor, “Two-wave-plate compensator method for single-point retardation measurements,” Appl. Opt. 43, 6580–6595 (2004).
    [Crossref]
  20. COMSOL Inc., “COMSOL Multiphysics 5.1,” https://www.comsol.com/comsol-multiphysics , 2009.
  21. J. F. Nye, Physical Properties of Crystals (Oxford Science Publication, 1957), p. 250.
  22. Schott North America, https://www.us.schott.com/d/advanced_optics/86cf82df-2ba7-4203-afef-fc396fca9e01/1.3/schott-lg-760-phosphate-laser-glass-may-2013-us.pdf , 2013.
  23. Schott AG, “Stress in optical glass,” https://www.us.schott.com/d/advanced_optics/1275dc1e-ef01-45d1-a88a-79deec322443/1.2/schott_tie-27_stress_in_optical_glass_us.pdf , 2004.
  24. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
    [Crossref]
  25. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
    [Crossref]
  26. T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
    [Crossref]
  27. S. Akhnoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
    [Crossref]
  28. Scilab Enterprises, INRIA, https://www.scilab.org/ , 1990.
  29. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [Crossref]
  30. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991).
    [Crossref]
  31. S. Timoshenko and J. Goodier, Theory of Elasticity (McGraw Hill, 1951).

2017 (2)

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

2016 (1)

J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

2015 (2)

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

S. Akhnoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]

2014 (1)

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

2013 (1)

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

2011 (1)

J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
[Crossref]

2010 (1)

J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys. Conf. Ser. 244, 032017 (2010).
[Crossref]

2008 (1)

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

2007 (1)

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

2006 (1)

2005 (1)

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

2004 (1)

2000 (1)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

1993 (2)

T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

1991 (1)

1984 (1)

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

1977 (1)

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
[Crossref]

1970 (2)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[Crossref]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

1968 (1)

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Agarwal, A.

Akhnoun, S.

Arnold, P. A.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Bachim, B. L.

Balembois, F.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Barbosa, F.

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Benayad, A.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Bon, P.

Boudeile, J.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Burdonov, K.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Byer, R.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

Caird, J. A.

Campbell, J. H.

J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Camy, P.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Chaput, J. M.

J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys. Conf. Ser. 244, 032017 (2010).
[Crossref]

Chaurasia, S.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Chen, L.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Cordoza, D.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Dachevski, A. I.

Didierjean, J.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Ding, Y.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Divoky, M.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

Doualan, J. L.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Druon, F.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Ebrardt, J.

J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys. Conf. Ser. 244, 032017 (2010).
[Crossref]

Eggleston, J. M.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[Crossref]

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Gaylor, T. K.

Georges, P.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Goodier, J.

S. Timoshenko and J. Goodier, Theory of Elasticity (McGraw Hill, 1951).

Hadovski, L.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Harwell, T.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Hayden, J. S.

J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
[Crossref]

He, D.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Hu, L.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Huang, W.

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Hulsey, S. D.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Ivanov, I. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

Jain, R.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

James, G. F.

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Joiner, R. E.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
[Crossref]

Kane, T. J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

Kang, S.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Khazanov, E.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Khazanov, E. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

Koechner, W.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Kropp, J.-R.

T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
[Crossref]

Kuhn, K.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

Kuzmin, A.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Li, X.

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Lion, C.

J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Lu, X.

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Lucianetti, A.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

Marburger, J.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
[Crossref]

Marker, A. J.

J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
[Crossref]

McHale, B.

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Ménard, V.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Miquel, J.-L.

J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Mocek, T.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

Moncorgé, R.

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

Monneret, S.

Montarou, C. C.

Mukhin, I. B.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

Newton, M. A.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford Science Publication, 1957), p. 250.

Ollis, C. W.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[Crossref]

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

Pendleton, D. L.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Petersen, D. E.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Prasad, K.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Raju, B. D. P.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Ramponi, A. J.

Ravi, O.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Rice, D. K.

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

Rose, T.

T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
[Crossref]

Runtal, A. S.

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Savatier, J.

Sawicka, M.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

Shaikin, I.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Shaykin, A.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Slezak, O.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

Soloviev, A.

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Spriegel, D.

T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
[Crossref]

Staver, P. R.

Steier, W. H.

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
[Crossref]

Stratton, P. L.

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Timoshenko, S.

S. Timoshenko and J. Goodier, Theory of Elasticity (McGraw Hill, 1951).

Ullery, G. T.

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

Unternahrer, J.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

Venkataswamy, M.

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Vivini, P.

J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

Wang, J.

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Wattellier, B.

Yin, Q.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Zhang, L.

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

R. E. Joiner, J. Marburger, and W. H. Steier, “Elimination of stress-induced birefringence effects in a single-crystal high power laser windows,” Appl. Phys. Lett. 30, 485–486 (1977).
[Crossref]

High Power Laser Sci. Eng. (1)

D. He, S. Kang, L. Zhang, L. Chen, Y. Ding, Q. Yin, and L. Hu, “Research and development of new neodymium laser glasses,” High Power Laser Sci. Eng. 5, e1 (2017).
[Crossref]

IEEE J. Quantum Electron. (4)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6, 557–566 (1970).
[Crossref]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The slab geometry laser. Part 1: Theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[Crossref]

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[Crossref]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[Crossref]

IEEE Trans. Plasma Sci. (1)

P. A. Arnold, S. D. Hulsey, G. T. Ullery, D. E. Petersen, D. L. Pendleton, C. W. Ollis, M. A. Newton, T. Harwell, D. Cordoza, and L. Hadovski, “An update on the status of the NIF power conditioning system,” IEEE Trans. Plasma Sci. 36, 383–388 (2008).
[Crossref]

J. Appl. Glass Sci. (1)

J. H. Campbell, J. S. Hayden, and A. J. Marker, “High-power solid state lasers: a laser glass perspective,” J. Appl. Glass Sci. 2, 3–29 (2011).
[Crossref]

J. Appl. Phys. (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[Crossref]

J. Non-Cryst. Solids (1)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Boudeile, J. Didierjean, P. Camy, J. L. Doualan, A. Benayad, V. Ménard, R. Moncorgé, F. Druon, F. Balembois, and P. Georges, “Thermal behavior of ytterbium-doped fluoride crystals under high power pumping,” J. Opt. Soc. Am. B 16, 10098–10109 (2007).
[Crossref]

J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991).
[Crossref]

J. Phys. Conf. Ser. (2)

J.-L. Miquel, C. Lion, and P. Vivini, “The laser mega-Joule: LMJ & PETAL status and program overview,” J. Phys. Conf. Ser. 688, 012067 (2016).
[Crossref]

J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” J. Phys. Conf. Ser. 244, 032017 (2010).
[Crossref]

JETP Lett. (1)

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94 (2005).
[Crossref]

Luminescence (1)

O. Ravi, K. Prasad, R. Jain, M. Venkataswamy, S. Chaurasia, and B. D. P. Raju, “Lasing transition at 1.06 μm emission in Nd3+-doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers,” Luminescence 32, 688–694 (2017).
[Crossref]

Meas. Sci. Technol. (1)

T. Rose, D. Spriegel, and J.-R. Kropp, “Fast photoelastic stress determination: application to monomode fibers and slices,” Meas. Sci. Technol. 4, 431–434 (1993).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

A. Shaykin, A. Soloviev, A. Kuzmin, I. Shaikin, K. Burdonov, and E. Khazanov, “150 mm diameter Nd:glass rod laser amplifier: characterization and prospects,” Proc. SPIE 9238, 923809 (2014).
[Crossref]

Y. Zhang, J. Wang, X. Lu, W. Huang, and X. Li, “Research and control of thermal effect in a helium gas-cooled multislab Nd:glass laser amplifier,” Proc. SPIE 9621, 962103 (2015).
[Crossref]

Other (8)

COMSOL Inc., “COMSOL Multiphysics 5.1,” https://www.comsol.com/comsol-multiphysics , 2009.

J. F. Nye, Physical Properties of Crystals (Oxford Science Publication, 1957), p. 250.

Schott North America, https://www.us.schott.com/d/advanced_optics/86cf82df-2ba7-4203-afef-fc396fca9e01/1.3/schott-lg-760-phosphate-laser-glass-may-2013-us.pdf , 2013.

Schott AG, “Stress in optical glass,” https://www.us.schott.com/d/advanced_optics/1275dc1e-ef01-45d1-a88a-79deec322443/1.2/schott_tie-27_stress_in_optical_glass_us.pdf , 2004.

W. Koechner, Solid State Laser Engineering (Springer, 2006).

P. A. Arnold, G. F. James, D. E. Petersen, D. L. Pendleton, B. McHale, F. Barbosa, A. S. Runtal, and P. L. Stratton, “An update on NIF pulsed power,” in IEEE Pulsed Power Conference (2009).

Scilab Enterprises, INRIA, https://www.scilab.org/ , 1990.

S. Timoshenko and J. Goodier, Theory of Elasticity (McGraw Hill, 1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Experimental setup for spatially resolved birefringence measurement. M, mirrors; L, lens; CL, cylindrical lens; TS, telescope; SF, spatial filter; HWP, half-wave plate; P, polarizer; A, analyzer; TLD, tunable laser diode; LDM, laser module diode. The picture at top right shows the diodes imaged at the entrance of the sample.
Fig. 2.
Fig. 2. Theoretical (blue solid line) and experimental (cross symbol) intensity transmitted through the analyzer received by a given pixel of the camera for a rotation from 0° to 180° of the two HWPs. The signal is normalized to the maximal intensity.
Fig. 3.
Fig. 3. Intrinsic birefringence of the LG760 glass sample.
Fig. 4.
Fig. 4. Raw images of the output surface of the LG760 under pumping at 10 ms after pump pulse duration for (a) θ at 0° and (b) θ at 16° with a color scale from black to green.
Fig. 5.
Fig. 5. (Amplitude in 106.) Spatial distribution of the induced birefringence of the LG760 for delays of (a) 10 ms, (b) 100 ms, (c) 300 ms, (d) 1 s.
Fig. 6.
Fig. 6. Transverse temperature distribution relaxation resulting in the rectangular rod when illuminated with a localized superGaussian pump distribution at (a) 10 ms, (b) 100 ms, (c) 300 ms, (d) 1 s beyond the onset of the pump pulse.
Fig. 7.
Fig. 7. Stress distribution at the center of the rod [MPa] at 10 ms after the pump pulse onset.
Fig. 8.
Fig. 8. (Amplitude in 106.) Simulation of the spatial distribution of the induced birefringence at (a) 10 ms, (b) 100 ms, (c) 300 ms, (d) 1 s after the onset of the pump pulse duration.
Fig. 9.
Fig. 9. (Amplitude in 106.) Selection for the mean birefringence calculations to compare the (a) measurement with the (b) simulation. The maximum amplitude of the measurement is removed to compare both pictures easily.
Fig. 10.
Fig. 10. Absolute value of simulated and measured induced birefringence calculated in the selected zone at 10 ms, 30 ms, 100 ms, 300 ms, and 1 s. The lines between the points are a guide to the eye. The blue line corresponds to the minimal measurable birefringence.
Fig. 11.
Fig. 11. Absorption cross section of the 2% Nd-doped LG760 glass. The circles represent the simulated wavelengths.
Fig. 12.
Fig. 12. Representation of the birefringence with respect to the absorption coefficient varied by shifting the central pump wavelength. Vertical bars represent the quadratic errors for measurements and simulations.

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

Di=εijEj,εij=ε0(δij+χij),
Bijεjk=δik.
Bij=B0,ij+ΔBij,
B0,ij=[n0+dndT(T(x,y,z)T0)]2δij,
ΔBij=Πijklσkl.
Πijkl=[π11π12π12000π12π11π12000π12π12π11000000π44000000π44000000π44],
π44=π11π12.
[B11B22B33B23B13B12]=[B0,11B0,22B0,33000]+[ΔB11ΔB22ΔB33ΔB23ΔB13ΔB12],
[ΔB11ΔB22ΔB33ΔB23ΔB13ΔB12]=[π11π12π12000π12π11π12000π12π12π11000000π44000000π44000000π44][σ11σ22σ33σ23σ13σ12].
π11=1.18×1012Pa1,π12=2.34×1012Pa1.
ΔB=[ΔB11ΔB12ΔB12ΔB22].
ΔB±=12(ΔB11+ΔB22±(ΔB11ΔB22)2+4ΔB122).
Δn±=ΔB±1/2.
Δn=|Δn+Δn|.
ΔB±=2n±3Δn±2n03Δn±,
Δn=n032(ΔB11ΔB22)2+4ΔB122.
tan(2α)=2ΔB12ΔB11ΔB22.
Δϕ=2πλ(Δn+Δn)L,
IA=I0sin2(2(θα))sin2(Δϕ2),
Δn(x,y)=λ2πLΔϕ(x,y).
Ji=REαiMiRαiE,
RαiE=(cos(αi)sin(αi)sin(αi)cos(αi)),Mi=(100eiΔϕi),
J3=J1*J2.
sp(AT)=sp(A),
(AB)T=BTAT.
J3T=(J1*J2)T=(REα1M1Rα1E*REα2M2Rα2E)T=Rα2ETM2TREα2TRα1ETM1TREα1T.
RαiET=RαiE1=REαiMiT=(100eiΔϕi)T=Mi.
J3T=REα2M2Rα2EREα1M1Rα1E=J2*J1.
sp(J1*J2)=sp(J2*J1).
sp(J2)=sp(J3T*J11)=sp(J11*J3).
sp(J3)=sp(i=1NBS1J1i*J2i)=sp(i=1NBS1J2i*J1i),
η=SB(I0SB)10OD,
ϱCpT(x,y,z,t)tκ2T(x,y,z,t)=Q0(x,y,z,t),
n·κT=0,
Iout=IineαBLl,
Pheat=ηhPopt,
εij=[Uixj+Ujxi].
εijTherm=αTΔTδij,
εij=1E[(1+ν)σijMecaνTr(σMeca)δij]+εijTherm,
σijMeca=E(1+ν)[εijν12νTr(ε)δij].
σijxi=0.
σijnj=0.
Δn=n032|π11π12|(σxσy)2+4σxy2.
Jrod=i=1NBS1R(αi+1αi+1)M(Δn+,i,Δn,i)R(αiαi),

Metrics