Abstract

A steady magnetic field perpendicular to a laser beam is widely used to improve the rate and quality of laser ablation. Recently, we reported a 69-fold enhancement of laser ablation of silicon using a magnetic field parallel to a laser beam. To understand the fundamental mechanisms of that phenomenon, multipulse magnetic-field-enhanced ablation of stainless steel, titanium alloy, and silicon was performed. The influence of magnetic field varies significantly depending on the material: from 2.8-fold ablation enhancement on stainless steel and silicon to no pronounced ablation modification on titanium alloy. Those results are discussed in terms of magnetized-plasma, magneto-absorption, skin-layer, and magnetic-field-influenced transport effects. Understanding of those mechanisms is crucial for advanced control of nanosecond laser–surface coupling to improve laser micromachining.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of the morphological evolution of the millisecond–nanosecond combined-pulse laser ablation of aluminum alloy

Bo-Shi Yuan, Di Wang, Yuan Dong, Wei Zhang, and Guang-Yong Jin
Appl. Opt. 57(20) 5743-5748 (2018)

Impact of assisting atmospheric pressure plasma on the formation of micro- and nanoparticles during picosecond-laser ablation of titanium

Stefan Grottker, Wolfgang Viöl, and Christoph Gerhard
Appl. Opt. 56(12) 3365-3371 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Haglund, “Mechanisms of laser-induced desorption and ablation,” in Laser Ablation and Desorption, J. C. Miller and R. F. Haglund, eds. (Academic, 1997).
  2. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  3. C. R. Phipps, ed., Laser Ablation and Its Application (Springer, 2007).
  4. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
    [Crossref]
  5. T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
    [Crossref]
  6. Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
    [Crossref]
  7. S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).
  8. H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
    [Crossref]
  9. Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
    [Crossref]
  10. M. Gatzen, “Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire,” Phys. Procedia 39, 59–66 (2012).
    [Crossref]
  11. A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
    [Crossref]
  12. K. S. Singh and A. K. Sharma, “Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere,” J. Appl. Phys. 119, 183301 (2016).
    [Crossref]
  13. S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
    [Crossref]
  14. C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
    [Crossref]
  15. C. Pagano and J. G. Lunney, “Lateral confinement of laser ablation plasma in magnetic field,” J. Phys. D 43, 305202 (2010).
    [Crossref]
  16. A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
    [Crossref]
  17. M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
    [Crossref]
  18. H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
    [Crossref]
  19. A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
    [Crossref]
  20. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [Crossref]
  21. H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
    [Crossref]
  22. H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
    [Crossref]
  23. H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
    [Crossref]
  24. H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.
  25. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
    [Crossref]
  26. W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
    [Crossref]
  27. J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
    [Crossref]
  28. G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
    [Crossref]
  29. B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
    [Crossref]
  30. C. Reale, “Determination of charge-transport parameters for the Group IV metals,” Rev. Bras. Fis. 3, 431–439 (1973).
  31. C. Y. Wu and W. B. Jian, “Electron–phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K,” Phys. Rev. B 57, 11232–11241 (1998).
    [Crossref]
  32. W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
    [Crossref]
  33. A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia, 1994).
  34. R. C. Weast and D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1977).
  35. Euro Inox and The European Stainless Steel Development Association, Stainless Steel: Tables and Technical Properties, Vol. 5 of Material and Applications Series (2007).
  36. Engineering ToolBox, “Metals—boiling temperatures,” 2007, https://www.engineeringtoolbox.com/boiling-temperature-metals-d_1267.html .
  37. C. S. Kim, Thermophysical Properties of Stainless Steels (Argonne National Laboratory, 1975).
  38. AZO Materials, “Titanium alloys—physical properties,” 2002, https://www.azom.com/article.aspx?ArticleID=1341 .
  39. N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
    [Crossref]
  40. M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
    [Crossref]
  41. H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
    [Crossref]
  42. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  43. A. B. Pippard, “An experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. A A250, 325–357 (1957).
    [Crossref]
  44. E. A. Kaner and V. F. Gantmakher, “Anomalous penetration of electromagnetic field in a metal and radiofrequency size effects,” Sov. Phys. Usp. 11, 81–105 (1968).
    [Crossref]
  45. E. A. Kaner and V. G. Skobov, “Electromagnetic waves in metals in a magnetic field,” Sov. Phys. Usp. 9, 480–503 (1967).
    [Crossref]
  46. S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, 2005).
  47. M. S. Dresselhaus and G. Dresselhaus, “Interband transitions for metals in a magnetic field,” Phys. Rev. 125, 499–508 (1962).
    [Crossref]
  48. F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, 1975).
  49. P. S. Zyryanov and G. I. Guseva, “Quantum theory of thermomagnetic phenomena in metals and semiconductors,” Sov. Phys. Usp. 11, 538–563 (1969).
    [Crossref]
  50. A. M. Zlobin and P. S. Zyryanov, “Hot electrons in semiconductors subjected to quantizing magnetic fields,” Sov. Phys. Usp. 14, 379–393(1972).
    [Crossref]
  51. M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977).
    [Crossref]
  52. T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
    [Crossref]
  53. M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
    [Crossref]
  54. H. M. Brown, “Effect of magnetic fields upon thermal conductivity of iron, copper, gold, silver and zinc,” Phys. Rev. 32, 508–514 (1928).
    [Crossref]
  55. R. T. Delves, “Thermomagnetic effects in semiconductors and semimetals,” Rep. Prog. Phys. 28, 249–289 (1965).
    [Crossref]
  56. J. F. Gregg and D. ter Haar, “On the effect of a magnetic field on the thermal conductivity,” Eur. J. Phys. 17, 303–306 (1996).
    [Crossref]
  57. E. A. Ryndin and A. S. Isaeva, “Numerical modeling of thermomechanical stresses generated in a thin film under laser-pulse action,” J. Russ. Laser Res. 35, 326–332 (2014).
    [Crossref]
  58. A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermomechanical stress analysis of laminated composite panels,” Comput. Mech. 25, 43–58 (2000).
    [Crossref]
  59. J. Zhou and H.-L. Tsai, “Effect of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding,” Int. J. Heat Mass Transfer 50, 2217–2235 (2007).
    [Crossref]
  60. K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
    [Crossref]

2018 (1)

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

2017 (1)

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

2016 (4)

M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
[Crossref]

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

K. S. Singh and A. K. Sharma, “Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere,” J. Appl. Phys. 119, 183301 (2016).
[Crossref]

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

2015 (2)

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

2014 (3)

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

E. A. Ryndin and A. S. Isaeva, “Numerical modeling of thermomechanical stresses generated in a thin film under laser-pulse action,” J. Russ. Laser Res. 35, 326–332 (2014).
[Crossref]

2013 (1)

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

2012 (1)

M. Gatzen, “Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire,” Phys. Procedia 39, 59–66 (2012).
[Crossref]

2011 (2)

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

2010 (1)

C. Pagano and J. G. Lunney, “Lateral confinement of laser ablation plasma in magnetic field,” J. Phys. D 43, 305202 (2010).
[Crossref]

2009 (2)

C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
[Crossref]

W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
[Crossref]

2007 (1)

J. Zhou and H.-L. Tsai, “Effect of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding,” Int. J. Heat Mass Transfer 50, 2217–2235 (2007).
[Crossref]

2006 (1)

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

2004 (1)

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

2003 (1)

T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
[Crossref]

2002 (1)

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

2001 (2)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
[Crossref]

2000 (3)

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
[Crossref]

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermomechanical stress analysis of laminated composite panels,” Comput. Mech. 25, 43–58 (2000).
[Crossref]

1999 (2)

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
[Crossref]

1998 (2)

J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

C. Y. Wu and W. B. Jian, “Electron–phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K,” Phys. Rev. B 57, 11232–11241 (1998).
[Crossref]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

J. F. Gregg and D. ter Haar, “On the effect of a magnetic field on the thermal conductivity,” Eur. J. Phys. 17, 303–306 (1996).
[Crossref]

1993 (1)

Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
[Crossref]

1992 (1)

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[Crossref]

1977 (1)

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

1973 (1)

C. Reale, “Determination of charge-transport parameters for the Group IV metals,” Rev. Bras. Fis. 3, 431–439 (1973).

1972 (1)

A. M. Zlobin and P. S. Zyryanov, “Hot electrons in semiconductors subjected to quantizing magnetic fields,” Sov. Phys. Usp. 14, 379–393(1972).
[Crossref]

1969 (1)

P. S. Zyryanov and G. I. Guseva, “Quantum theory of thermomagnetic phenomena in metals and semiconductors,” Sov. Phys. Usp. 11, 538–563 (1969).
[Crossref]

1968 (1)

E. A. Kaner and V. F. Gantmakher, “Anomalous penetration of electromagnetic field in a metal and radiofrequency size effects,” Sov. Phys. Usp. 11, 81–105 (1968).
[Crossref]

1967 (1)

E. A. Kaner and V. G. Skobov, “Electromagnetic waves in metals in a magnetic field,” Sov. Phys. Usp. 9, 480–503 (1967).
[Crossref]

1965 (1)

R. T. Delves, “Thermomagnetic effects in semiconductors and semimetals,” Rep. Prog. Phys. 28, 249–289 (1965).
[Crossref]

1962 (1)

M. S. Dresselhaus and G. Dresselhaus, “Interband transitions for metals in a magnetic field,” Phys. Rev. 125, 499–508 (1962).
[Crossref]

1957 (1)

A. B. Pippard, “An experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. A A250, 325–357 (1957).
[Crossref]

1928 (1)

H. M. Brown, “Effect of magnetic fields upon thermal conductivity of iron, copper, gold, silver and zinc,” Phys. Rev. 32, 508–514 (1928).
[Crossref]

Abe, Y.

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

Adachi, S.

S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, 2005).

Aggarwal, M.

M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
[Crossref]

Ahmad, Q. S.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Akram, M.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Ambrosch-Draxl, C.

W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
[Crossref]

Arshad, A.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Avilov, V.

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

Bashir, S.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Bassani, F.

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, 1975).

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Bindhu, C. V.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Boivineau, M.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Bonitz, M.

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Borsos, B.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Brown, H. M.

H. M. Brown, “Effect of magnetic fields upon thermal conductivity of iron, copper, gold, silver and zinc,” Phys. Rev. 32, 508–514 (1928).
[Crossref]

Brumfield, B.

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Cagran, C.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Chen, G.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Chen, H.

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Dargys, A.

A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia, 1994).

Delves, R. T.

R. T. Delves, “Thermomagnetic effects in semiconductors and semimetals,” Rep. Prog. Phys. 28, 249–289 (1965).
[Crossref]

Doytier, D.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Dresselhaus, G.

M. S. Dresselhaus and G. Dresselhaus, “Interband transitions for metals in a magnetic field,” Phys. Rev. 125, 499–508 (1962).
[Crossref]

Dresselhaus, M. S.

M. S. Dresselhaus and G. Dresselhaus, “Interband transitions for metals in a magnetic field,” Phys. Rev. 125, 499–508 (1962).
[Crossref]

Endo, A.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Evtushenko, A. B.

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

Eyrand, V.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Farrokhi, H.

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.

Fedosejevs, R.

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

Gantmakher, V. F.

E. A. Kaner and V. F. Gantmakher, “Anomalous penetration of electromagnetic field in a metal and radiofrequency size effects,” Sov. Phys. Usp. 11, 81–105 (1968).
[Crossref]

Garnov, S. V.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Gatzen, M.

M. Gatzen, “Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire,” Phys. Procedia 39, 59–66 (2012).
[Crossref]

Glantschnig, K.

W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
[Crossref]

Gopinath, P.

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

Gregg, J. F.

J. F. Gregg and D. ter Haar, “On the effect of a magnetic field on the thermal conductivity,” Eur. J. Phys. 17, 303–306 (1996).
[Crossref]

Gruzdev, V.

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.

Gumenyuk, A.

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

Guseva, G. I.

P. S. Zyryanov and G. I. Guseva, “Quantum theory of thermomagnetic phenomena in metals and semiconductors,” Sov. Phys. Usp. 11, 538–563 (1969).
[Crossref]

Hafeez, S.

C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
[Crossref]

Haglund, R. F.

R. F. Haglund, “Mechanisms of laser-induced desorption and ablation,” in Laser Ablation and Desorption, J. C. Miller and R. F. Haglund, eds. (Academic, 1997).

Harilal, S.

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

Harilal, S. S.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Hartig, K.

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

Hassan, S. M.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Hassanein, A.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Hayat, A.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Hora, J.

J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Humlícek, J.

J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Isaeva, A. S.

E. A. Ryndin and A. S. Isaeva, “Numerical modeling of thermomechanical stresses generated in a thin film under laser-pulse action,” J. Russ. Laser Res. 35, 326–332 (2014).
[Crossref]

Jan, W.

W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
[Crossref]

Jellison, G. E.

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[Crossref]

Jian, W. B.

C. Y. Wu and W. B. Jian, “Electron–phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K,” Phys. Rev. B 57, 11232–11241 (1998).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Kahlert, H.

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Kaner, E. A.

E. A. Kaner and V. F. Gantmakher, “Anomalous penetration of electromagnetic field in a metal and radiofrequency size effects,” Sov. Phys. Usp. 11, 81–105 (1968).
[Crossref]

E. A. Kaner and V. G. Skobov, “Electromagnetic waves in metals in a magnetic field,” Sov. Phys. Usp. 9, 480–503 (1967).
[Crossref]

Kant, N.

M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
[Crossref]

Katayama, S.

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

Kawahito, Y.

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

Khalid, A.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Kim, C. S.

C. S. Kim, Thermophysical Properties of Stainless Steels (Argonne National Laboratory, 1975).

Kononenko, T. V.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Konov, V. I.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Kudryashov, S. I.

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

Kumar, A.

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

Kumar, H.

M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
[Crossref]

Kundrotas, J.

A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia, 1994).

Lan, H.

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Lax, M.

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977).
[Crossref]

Liao, B.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Lide, D. R.

R. C. Weast and D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1977).

Lu, P. X.

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Lunney, J. G.

C. Pagano and J. G. Lunney, “Lateral confinement of laser ablation plasma in magnetic field,” J. Phys. D 43, 305202 (2010).
[Crossref]

C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
[Crossref]

Malik, M.

A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermomechanical stress analysis of laminated composite panels,” Comput. Mech. 25, 43–58 (2000).
[Crossref]

Man, H. C.

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
[Crossref]

Melzer, A.

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Mendoza, J. M.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Minami, H.

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

Mizutani, M.

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

Mocek, T.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Moisio, T. J. I.

Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Nadal, M.-H.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Najmabadi, F.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Nisha, T.

T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Noor, A. K.

A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermomechanical stress analysis of laminated composite panels,” Comput. Mech. 25, 43–58 (2000).
[Crossref]

O’Shay, B.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Ohta, H.

T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
[Crossref]

Ott, T.

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Pagano, C.

C. Pagano and J. G. Lunney, “Lateral confinement of laser ablation plasma in magnetic field,” J. Phys. D 43, 305202 (2010).
[Crossref]

C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
[Crossref]

Parravicini, G. P.

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, 1975).

Phillips, M.

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

Pimenov, S. M.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Pippard, A. B.

A. B. Pippard, “An experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. A A250, 325–357 (1957).
[Crossref]

Pottlacher, G.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Puttscher, M.

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Qiu, B.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Raju, M. S.

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

Rawat, R. S.

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

Reale, C.

C. Reale, “Determination of charge-transport parameters for the Group IV metals,” Rev. Bras. Fis. 3, 431–439 (1973).

Restrepo, O. D.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Rethmeier, M.

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

Romano, V.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Roy, A.

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Ruan, X.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Ryndin, E. A.

E. A. Ryndin and A. S. Isaeva, “Numerical modeling of thermomechanical stresses generated in a thin film under laser-pulse action,” J. Russ. Laser Res. 35, 326–332 (2014).
[Crossref]

Salminen, A. S.

Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
[Crossref]

Schneider, A.

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

Sharma, A. K.

K. S. Singh and A. K. Sharma, “Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere,” J. Appl. Phys. 119, 183301 (2016).
[Crossref]

Shibata, H.

T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
[Crossref]

Shukhov, Y. G.

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

Šik, J.

J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Singh, K. S.

K. S. Singh and A. K. Sharma, “Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere,” J. Appl. Phys. 119, 183301 (2016).
[Crossref]

Singh, R. K.

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

Skobov, V. G.

E. A. Kaner and V. G. Skobov, “Electromagnetic waves in metals in a magnetic field,” Sov. Phys. Usp. 9, 480–503 (1967).
[Crossref]

Sun, Z.

Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
[Crossref]

ter Haar, D.

J. F. Gregg and D. ter Haar, “On the effect of a magnetic field on the thermal conductivity,” Eur. J. Phys. 17, 303–306 (1996).
[Crossref]

Tian, Z.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Tillack, M. S.

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Tsai, H.-L.

J. Zhou and H.-L. Tsai, “Effect of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding,” Int. J. Heat Mass Transfer 50, 2217–2235 (2007).
[Crossref]

Tse, H. C.

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
[Crossref]

Tsui, Y. Y.

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Vallabhaneni, A.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Vick, D.

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Wang, X. B.

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Weast, R. C.

R. C. Weast and D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1977).

Weber, W. P.

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

Wei, H.-S.

W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
[Crossref]

Werner, W. S. M.

W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
[Crossref]

Wilthan, B.

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

Wu, C. Y.

C. Y. Wu and W. B. Jian, “Electron–phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K,” Phys. Rev. B 57, 11232–11241 (1998).
[Crossref]

Wu, G. Y.

W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
[Crossref]

Yaseen, N.

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Yue, T. M.

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
[Crossref]

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
[Crossref]

Zheng, H.

H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.

Zheng, H. Y.

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

Zhou, J.

J. Zhou and H.-L. Tsai, “Effect of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding,” Int. J. Heat Mass Transfer 50, 2217–2235 (2007).
[Crossref]

Zhou, W.

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.

Zlobin, A. M.

A. M. Zlobin and P. S. Zyryanov, “Hot electrons in semiconductors subjected to quantizing magnetic fields,” Sov. Phys. Usp. 14, 379–393(1972).
[Crossref]

Zuo, D. L.

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Zyryanov, P. S.

A. M. Zlobin and P. S. Zyryanov, “Hot electrons in semiconductors subjected to quantizing magnetic fields,” Sov. Phys. Usp. 14, 379–393(1972).
[Crossref]

P. S. Zyryanov and G. I. Guseva, “Quantum theory of thermomagnetic phenomena in metals and semiconductors,” Sov. Phys. Usp. 11, 538–563 (1969).
[Crossref]

Appl. Phys. A (3)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

T. V. Kononenko, S. V. Garnov, S. M. Pimenov, V. I. Konov, V. Romano, B. Borsos, and W. P. Weber, “Laser ablation and micropatterning of thin TiN coatings,” Appl. Phys. A 71, 627–631 (2000).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Appl. Phys. B (1)

A. Arshad, S. Bashir, A. Hayat, M. Akram, A. Khalid, N. Yaseen, and Q. S. Ahmad, “Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma,” Appl. Phys. B 122, 63(2016).
[Crossref]

Appl. Phys. Lett. (1)

H. Farrokhi, V. Gruzdev, H. Y. Zheng, R. S. Rawat, and W. Zhou, “Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses,” Appl. Phys. Lett. 108, 254103 (2016).
[Crossref]

Appl. Surf. Sci. (1)

N. M. Bulgakova, A. B. Evtushenko, Y. G. Shukhov, S. I. Kudryashov, and A. V. Bulgakov, “Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses,” Appl. Surf. Sci. 257, 10876–10882 (2011).
[Crossref]

Comput. Mech. (1)

A. K. Noor and M. Malik, “An assessment of five modeling approaches for thermomechanical stress analysis of laminated composite panels,” Comput. Mech. 25, 43–58 (2000).
[Crossref]

Eur. J. Phys. (1)

J. F. Gregg and D. ter Haar, “On the effect of a magnetic field on the thermal conductivity,” Eur. J. Phys. 17, 303–306 (1996).
[Crossref]

Eur. Phys. J. D (1)

H. Kahlert, A. Melzer, M. Puttscher, T. Ott, and M. Bonitz, “Magnetic field effects and waves in complex plasmas,” Eur. Phys. J. D 72, 83 (2018).
[Crossref]

Europhys. Lett. (1)

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, “First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon,” Europhys. Lett. 109, 57006 (2015).
[Crossref]

Int. J. Heat Mass Transfer (1)

J. Zhou and H.-L. Tsai, “Effect of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding,” Int. J. Heat Mass Transfer 50, 2217–2235 (2007).
[Crossref]

Int. J. Thermophys. (1)

M. Boivineau, C. Cagran, D. Doytier, V. Eyrand, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy,” Int. J. Thermophys. 27, 507–529 (2006).
[Crossref]

J. Appl. Phys. (4)

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919–3924 (1977).
[Crossref]

J. Šik, J. Hora, and J. Humlíček, “Optical functions of silicon at high temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

M. S. Raju, R. K. Singh, P. Gopinath, and A. Kumar, “Influence of magnetic field on laser-produced barium plasmas: spectral and dynamic behaviour of neutral and ionic species,” J. Appl. Phys. 116, 153301 (2014).
[Crossref]

K. S. Singh and A. K. Sharma, “Effect of variation of magnetic field on laser ablation depth of copper and aluminum targets in air atmosphere,” J. Appl. Phys. 119, 183301 (2016).
[Crossref]

J. Mater. Sci. Lett. (1)

Z. Sun, A. S. Salminen, and T. J. I. Moisio, “Quality improvement of laser beam welds by plasma control,” J. Mater. Sci. Lett. 12, 1131–1133 (1993).
[Crossref]

J. Phys. Chem. Ref. Data (1)

W. S. M. Werner, K. Glantschnig, and C. Ambrosch-Draxl, “Optical constants and inelastic electron-scattering data for 17 elemental metals,” J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).
[Crossref]

J. Phys. D (2)

C. Pagano, S. Hafeez, and J. G. Lunney, “Influence of transverse magnetic field on expansion and spectral emission of laser produced plasma,” J. Phys. D 42, 155205 (2009).
[Crossref]

C. Pagano and J. G. Lunney, “Lateral confinement of laser ablation plasma in magnetic field,” J. Phys. D 43, 305202 (2010).
[Crossref]

J. Russ. Laser Res. (1)

E. A. Ryndin and A. S. Isaeva, “Numerical modeling of thermomechanical stresses generated in a thin film under laser-pulse action,” J. Russ. Laser Res. 35, 326–332 (2014).
[Crossref]

J. Vac. Sci. Technol. A (1)

Y. Y. Tsui, H. Minami, D. Vick, and R. Fedosejevs, “Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition,” J. Vac. Sci. Technol. A 20, 744–747 (2002).
[Crossref]

Mater. Trans. (1)

T. Nisha, H. Shibata, and H. Ohta, “Thermal diffusivities and conductivities of molten germanium and silicon,” Mater. Trans. 44, 2369–2374 (2003).
[Crossref]

Opt. Laser Eng. (1)

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric and magnetic fields on plasma control during CO2 laser welding,” Opt. Laser Eng. 32, 55–63 (1999).
[Crossref]

Opt. Laser Technol. (1)

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of magnetic field on plasma control during CO2 laser welding,” Opt. Laser Technol. 31, 363–368 (1999).
[Crossref]

Opt. Lasers Eng. (1)

H. C. Tse, H. C. Man, and T. M. Yue, “Effect of electric field on plasma control during CO2 laser welding,” Opt. Lasers Eng. 33, 181–189 (2000).
[Crossref]

Opt. Mater. (1)

G. E. Jellison, “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[Crossref]

Optik (1)

M. Aggarwal, H. Kumar, and N. Kant, “Propagation of Gaussian laser beam through magnetized cold plasma with increasing density ramp,” Optik 127, 2212–2216 (2016).
[Crossref]

Philos. Trans. R. Soc. A (1)

A. B. Pippard, “An experimental determination of the Fermi surface in copper,” Philos. Trans. R. Soc. A A250, 325–357 (1957).
[Crossref]

Phys. Plasmas (1)

A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasma in the presence of a magnetic field,” Phys. Plasmas 21, 053106 (2014).
[Crossref]

Phys. Procedia (2)

M. Gatzen, “Influence of low-frequency magnetic fields during laser beam welding of aluminium with filler wire,” Phys. Procedia 39, 59–66 (2012).
[Crossref]

A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier, “Laser beam welding of aluminium alloys under the influence of an electromagnetic field,” Phys. Procedia 41, 4–11 (2013).
[Crossref]

Phys. Rev. (2)

M. S. Dresselhaus and G. Dresselhaus, “Interband transitions for metals in a magnetic field,” Phys. Rev. 125, 499–508 (1962).
[Crossref]

H. M. Brown, “Effect of magnetic fields upon thermal conductivity of iron, copper, gold, silver and zinc,” Phys. Rev. 32, 508–514 (1928).
[Crossref]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

C. Y. Wu and W. B. Jian, “Electron–phonon scattering times in crystalline disordered titanium alloys between 3 and 15 K,” Phys. Rev. B 57, 11232–11241 (1998).
[Crossref]

W. Jan, G. Y. Wu, and H.-S. Wei, “Electron–phonon interaction in impure polycrystalline metals,” Phys. Rev. B 64, 165101 (2001).
[Crossref]

Phys. Rev. E (1)

S. S. Harilal, M. S. Tillack, B. O’Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413(2004).
[Crossref]

Plasma Sources Sci. Technol. (1)

H. Lan, X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu, “Influence of a magnetic field on laser-produced Sn plasma,” Plasma Sources Sci. Technol. 24, 055012 (2015).
[Crossref]

Rep. Prog. Phys. (1)

R. T. Delves, “Thermomagnetic effects in semiconductors and semimetals,” Rep. Prog. Phys. 28, 249–289 (1965).
[Crossref]

Rev. Bras. Fis. (1)

C. Reale, “Determination of charge-transport parameters for the Group IV metals,” Rev. Bras. Fis. 3, 431–439 (1973).

Sov. Phys. Usp. (4)

E. A. Kaner and V. F. Gantmakher, “Anomalous penetration of electromagnetic field in a metal and radiofrequency size effects,” Sov. Phys. Usp. 11, 81–105 (1968).
[Crossref]

E. A. Kaner and V. G. Skobov, “Electromagnetic waves in metals in a magnetic field,” Sov. Phys. Usp. 9, 480–503 (1967).
[Crossref]

P. S. Zyryanov and G. I. Guseva, “Quantum theory of thermomagnetic phenomena in metals and semiconductors,” Sov. Phys. Usp. 11, 538–563 (1969).
[Crossref]

A. M. Zlobin and P. S. Zyryanov, “Hot electrons in semiconductors subjected to quantizing magnetic fields,” Sov. Phys. Usp. 14, 379–393(1972).
[Crossref]

Spectrochim. Acta B Atom. Spectros. (1)

K. Hartig, B. Brumfield, M. Phillips, and S. Harilal, “Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes,” Spectrochim. Acta B Atom. Spectros. 135, 54–62 (2017).
[Crossref]

Trans. JWRI (1)

S. Katayama, Y. Abe, M. Mizutani, and Y. Kawahito, “Deep penetration welding with high-power laser under vacuum,” Trans. JWRI 40, 15–19 (2011).

Other (13)

R. F. Haglund, “Mechanisms of laser-induced desorption and ablation,” in Laser Ablation and Desorption, J. C. Miller and R. F. Haglund, eds. (Academic, 1997).

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

C. R. Phipps, ed., Laser Ablation and Its Application (Springer, 2007).

A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia, 1994).

R. C. Weast and D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 1977).

Euro Inox and The European Stainless Steel Development Association, Stainless Steel: Tables and Technical Properties, Vol. 5 of Material and Applications Series (2007).

Engineering ToolBox, “Metals—boiling temperatures,” 2007, https://www.engineeringtoolbox.com/boiling-temperature-metals-d_1267.html .

C. S. Kim, Thermophysical Properties of Stainless Steels (Argonne National Laboratory, 1975).

AZO Materials, “Titanium alloys—physical properties,” 2002, https://www.azom.com/article.aspx?ArticleID=1341 .

H. Farrokhi, V. Gruzdev, H. Zheng, and W. Zhou, “Strong enhancement of nanosecond laser ablation of silicon by axial magnetic field,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper STh1J.2.

F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids (Pergamon, 1975).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Traditional longitudinal alignment of magnetic field (blue arrows), i.e., parallel to a surface and normal to a laser beam, delivers a larger Lorenz force F due to almost normal alignment of the magnetic field (B) and the speed (v) of particles 1 and 2 departing from the surface. (b) Axial alignment of the magnetic field produces a significantly smaller Lorenz force.
Fig. 2.
Fig. 2. Sketch of the experimental setup for axially magnetized nanosecond laser ablation and a scheme of mutual alignment of the laser beam and LPP under an axial magnetic field.
Fig. 3.
Fig. 3. (a, b) SEM images and (c, d) depth profile of the ablation area produced on silicon (a, c) without and (b, d) with the magnetic field directed normally toward the surface.
Fig. 4.
Fig. 4. (a, b) SEM images and (c, d) depth profile of the ablation area produced on stainless steel (a, c) without and (b, d) with the magnetic field directed toward the surface.
Fig. 5.
Fig. 5. (a, b) SEM images and (b, d) depth profile of the ablation area on the titanium-alloy surface treated (a, c) without and (b, d) with the magnetic field directed toward the surface.
Fig. 6.
Fig. 6. Sketch of the distribution of temperature-dependent thermal conductivity (red solid) and thermal flow (blue dotted) in the melted surface layer and at the liquid–solid interface of (a) silicon, (b) stainless steel, and (c) titanium alloy. Shaded strips depict the location of high temperature gradients. The vertical axis sketches the scale of thermal-conductivity variations in arbitrary units.

Tables (2)

Tables Icon

Table 1. Material Parameters and Optical Properties at a Wavelength of 355 nm

Tables Icon

Table 2. Thermophysical Properties of Silicon [52], Stainless Steel 316L [53], and Titanium Alloy Ti6Al4V [54]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F=q(v×B),
ωC=qBm,τC=2πωC,
RL=mv¯qB=2kBmTBOILqB,v¯=2kBTBOILm,
δe=2ρωμrμ0,
RL<l,
λTH(T)=λTH0+aT.
q=λTH(T)T,
λTH(T,B)=λTH(T)+σBT,