Abstract

In this study, a surface plasmon resonance (SPR) biosensor based on graphene–barium titanate nanocomposites is optimized by using an Ag–Au bimetallic configuration to achieve sensitivity enhancement. The angular interrogation method is used for the analysis of the reflectance from the sensor. By optimizing parameters, a sensitivity and figure of merit as high as 294°/RIU and 42.13 1/RIU can be obtained with Ag–Au bimetallic film at a wavelength of 633 nm. Compared with conventional SPR biosensors with a single metal film, the sensitivity of the proposed biosensor with Ag–Au bimetallic film can be greatly enhanced. Also, Au thin film can be used as a protective layer to prevent oxidation of the Ag layer.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors

Seung Ho Choi, Young L. Kim, and Kyung Min Byun
Opt. Express 19(2) 458-466 (2011)

Highly sensitive graphene biosensors based on surface plasmon resonance

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li
Opt. Express 18(14) 14395-14400 (2010)

Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism

Yuncai Feng, Youwen Liu, and Jinghua Teng
Appl. Opt. 57(14) 3639-3644 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.
  2. K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.
  3. S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
    [Crossref]
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793 (2008).
    [Crossref]
  5. F. Zhou, Y. Liu, Z. Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010).
    [Crossref]
  6. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
    [Crossref]
  7. Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
    [Crossref]
  8. H. Šípová and J. Homola, “Surface plasmon resonance sensing of nucleic acids: a review,” Anal. Chim. Acta 773, 9–23 (2013).
    [Crossref]
  9. J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
    [Crossref]
  10. N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
    [Crossref]
  11. W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
    [Crossref]
  12. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
    [Crossref]
  13. R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
    [Crossref]
  14. C. Lin and S. Chen, “Optimized dielectric film for maximum sensitivity of nearly guided-wave surface plasmon resonance sensor,” Phys. Status Solidi A 215, 1700499 (2018).
    [Crossref]
  15. G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
    [Crossref]
  16. V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
    [Crossref]
  17. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
    [Crossref]
  18. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
    [Crossref]
  19. P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
    [Crossref]
  20. A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
    [Crossref]
  21. L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
    [Crossref]
  22. S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
    [Crossref]
  23. E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
    [Crossref]
  24. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A 216, 398–410 (1968).
    [Crossref]
  25. M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
    [Crossref]
  26. S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
    [Crossref]
  27. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005).
    [Crossref]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [Crossref]
  30. J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
    [Crossref]
  31. P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B Chem. 169, 161–166 (2012).
    [Crossref]
  32. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
    [Crossref]
  33. M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sens. Lett. 14, 145–152 (2016).
    [Crossref]
  34. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159, 24–32 (2010).
    [Crossref]
  35. A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
    [Crossref]
  36. R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
    [Crossref]
  37. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [Crossref]
  38. J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
    [Crossref]
  39. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
    [Crossref]
  40. Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
    [Crossref]
  41. K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
    [Crossref]
  42. A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B Chem. 237, 969–973 (2016).
    [Crossref]
  43. R. Jha and A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sens. Actuators A, Phys. 165, 271–275 (2011).
    [Crossref]
  44. P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
    [Crossref]
  45. P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
    [Crossref]
  46. P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
    [Crossref]
  47. P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
    [Crossref]

2018 (6)

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

C. Lin and S. Chen, “Optimized dielectric film for maximum sensitivity of nearly guided-wave surface plasmon resonance sensor,” Phys. Status Solidi A 215, 1700499 (2018).
[Crossref]

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

2017 (3)

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

2016 (5)

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B Chem. 237, 969–973 (2016).
[Crossref]

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sens. Lett. 14, 145–152 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

2015 (4)

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

2014 (6)

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
[Crossref]

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
[Crossref]

2013 (3)

P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
[Crossref]

P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
[Crossref]

H. Šípová and J. Homola, “Surface plasmon resonance sensing of nucleic acids: a review,” Anal. Chim. Acta 773, 9–23 (2013).
[Crossref]

2012 (2)

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B Chem. 169, 161–166 (2012).
[Crossref]

2011 (1)

R. Jha and A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sens. Actuators A, Phys. 165, 271–275 (2011).
[Crossref]

2010 (3)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
[Crossref]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159, 24–32 (2010).
[Crossref]

F. Zhou, Y. Liu, Z. Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18, 13337–13344 (2010).
[Crossref]

2009 (3)

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

2008 (2)

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793 (2008).
[Crossref]

2006 (1)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

2005 (1)

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005).
[Crossref]

2001 (1)

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A 216, 398–410 (1968).
[Crossref]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159, 24–32 (2010).
[Crossref]

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Ajiki, Y.

Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.

Alwahib, A. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Anderson, T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Anower, M. S.

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

Auslender, M.

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Avouris, P.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
[Crossref]

Baillargeat, D.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Bharadwaj, S.

P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
[Crossref]

Bidin, N.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Catchpole, K. R.

Cazemier, G.

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

Chabot, V.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Chander, N.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Chang, H. M.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Charette, P. G.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Chava, V. S. N.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Chen, H. L.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Chen, S.

C. Lin and S. Chen, “Optimized dielectric film for maximum sensitivity of nearly guided-wave surface plasmon resonance sensor,” Phys. Status Solidi A 215, 1700499 (2018).
[Crossref]

Chen, S. H.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Chi, Y. M.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Coquet, P.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Dai, X.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Dinh, X.-Q.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Fan, D.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Fen, Y. W.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Fouad, S.

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

Geim, A. K.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Grandbois, M.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Guinea, F.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Guo, J.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Gupta, B. D.

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005).
[Crossref]

Haasnoot, W.

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

Hasan, M. R.

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

Hide, M.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Hiragun, T.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Ho, H.-P.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Homola, J.

H. Šípová and J. Homola, “Surface plasmon resonance sensing of nucleic acids: a review,” Anal. Chim. Acta 773, 9–23 (2013).
[Crossref]

Hossain, M. B.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sens. Lett. 14, 145–152 (2016).
[Crossref]

Hu, S.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Inum, R.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

Ishii, K.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Jamal, Z. A. Z.

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

Jha, R.

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
[Crossref]

P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
[Crossref]

P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B Chem. 169, 161–166 (2012).
[Crossref]

R. Jha and A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sens. Actuators A, Phys. 165, 271–275 (2011).
[Crossref]

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

Jia, Y.

Jiang, L.

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

Kan, T.

Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.

Kawaguchi, T.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Kawai, M.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Komarala, V. K.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
[Crossref]

Kumar, A.

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

Kumar, R.

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

Kumar, S.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Kumar Maharana, P.

P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
[Crossref]

Kushwaha, A. S.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

Lahav, A.

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Lai, Y. S.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Lakhtakia, A.

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Li, Z. Y.

Liao, Y. C.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Lin, C.

C. Lin and S. Chen, “Optimized dielectric film for maximum sensitivity of nearly guided-wave surface plasmon resonance sensor,” Phys. Status Solidi A 215, 1700499 (2018).
[Crossref]

Lin, K. T.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Lin, Z.

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

Ling, Z.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Liu, Y.

Lu, S.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

Maharana, P. K.

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B Chem. 169, 161–166 (2012).
[Crossref]

Mahdi, M. A.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Matsumoto, K.

Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.

Maurya, J. B.

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

Meng, X.-M.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Miron, Y.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

Mishra, A. K.

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B Chem. 237, 969–973 (2016).
[Crossref]

Mishra, H.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

Mishra, S. K.

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B Chem. 237, 969–973 (2016).
[Crossref]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
[Crossref]

Neto, A. H. C.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

Novoselov, K. S.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Olieman, K.

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

Omar, N. A. S.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Ong, B. H.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A 216, 398–410 (1968).
[Crossref]

Padhy, P.

P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
[Crossref]

Palei, S.

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Peres, N. M. R.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

Polman, A.

Poopalan, P.

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

Prajapati, Y. K.

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

Prakash, A.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
[Crossref]

Rahman, M. S.

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

Raikwar, S.

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

Rana, M. M.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sens. Lett. 14, 145–152 (2016).
[Crossref]

Reddy, S. R.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Rikta, K. A.

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

Sabri, N.

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

Saini, J. P.

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

Sakamoto, K.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Sardana, S. K.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159, 24–32 (2010).
[Crossref]

Sharma, A. K.

R. Jha and A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sens. Actuators A, Phys. 165, 271–275 (2011).
[Crossref]

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005).
[Crossref]

Shimoyama, I.

Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.

Shushama, K. N.

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

Singh, V.

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

Šípová, H.

H. Šípová and J. Homola, “Surface plasmon resonance sensing of nucleic acids: a review,” Anal. Chim. Acta 773, 9–23 (2013).
[Crossref]

Smith, G. B.

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Srivastava, M.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

Srivastava, S. K.

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

Srivastava, T.

P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

Thouti, E.

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

Tjin, S. C.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

Tripathi, R.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

Tseng, S. C.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Verheijen, R.

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

Verma, A.

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Wang, Q.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

Wu, L.

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
[Crossref]

Xia, J.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

Xia, Y.

Xiang, Y.

L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure,” J. Lightwave Technol. 35, 82–87 (2017).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Yaacob, M. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Yanase, T.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Yanase, Y.

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Yong, K.-T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Yuan, X.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

Zainuddin, N. H.

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Zeng, S.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

Zhou, F.

Anal. Chim. Acta (1)

H. Šípová and J. Homola, “Surface plasmon resonance sensing of nucleic acids: a review,” Anal. Chim. Acta 773, 9–23 (2013).
[Crossref]

Appl. Phys. A (2)

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys. A 124, 235–244 (2018).
[Crossref]

J. B. Maurya, Y. K. Prajapati, V. Singh, and J. P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2–SiO2 composite layer,” Appl. Phys. A 121, 525–533 (2015).
[Crossref]

Appl. Phys. Lett. (2)

S. K. Sardana, V. S. N. Chava, E. Thouti, N. Chander, S. Kumar, S. R. Reddy, and V. K. Komarala, “Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell,” Appl. Phys. Lett. 104, 073903 (2014).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

IEEE Photon. J. (2)

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. K. Maharana, P. Padhy, and R. Jha, “On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene,” IEEE Photon. Technol. Lett. 25, 2156–2159 (2013).
[Crossref]

J. Agric. Food Chem. (1)

W. Haasnoot, K. Olieman, G. Cazemier, and R. Verheijen, “Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder,” J. Agric. Food Chem. 49, 5201–5206 (2001).
[Crossref]

J. Appl. Phys. (1)

P. Kumar Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304(2013).
[Crossref]

J. Lightwave Technol. (1)

J. Nano- Electron. Phys. (1)

S. Fouad, N. Sabri, Z. A. Z. Jamal, and P. Poopalan, “Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate,” J. Nano- Electron. Phys. 8, 040851 (2016).
[Crossref]

J. Opt. A (1)

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

J. Phys. D (1)

P. K. Maharana, T. Srivastava, and R. Jha, “Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements,” J. Phys. D 47, 385102 (2014).
[Crossref]

Nat. Photonics (1)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4, 297–301 (2010).
[Crossref]

Opt. Commun. (1)

A. Verma, A. Prakash, and R. Tripathi, “Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap,” Opt. Commun. 357, 106–112 (2015).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

M. S. Rahman, M. R. Hasan, K. A. Rikta, and M. S. Anower, “A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization,” Opt. Mater. 75, 567–573 (2018).
[Crossref]

Opt. Quantum Electron. (2)

J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, “Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer,” Opt. Quantum Electron. 47, 3599–3611 (2015).
[Crossref]

K. N. Shushama, M. M. Rana, R. Inum, and M. B. Hossain, “Sensitivity enhancement of graphene coated surface plasmon resonance biosensor,” Opt. Quantum Electron. 49, 381–393 (2017).
[Crossref]

Optik (2)

J. B. Maurya, Y. K. Prajapati, S. Raikwar, and J. P. Saini, “A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas,” Optik 160, 428–433 (2018).
[Crossref]

N. H. Zainuddin, Y. W. Fen, A. A. Alwahib, M. H. Yaacob, N. Bidin, N. A. S. Omar, and M. A. Mahdi, “Detection of adulterated honey by surface plasmon resonance optical sensor,” Optik 168, 134–139 (2018).
[Crossref]

Photon. Nanostr. Fundam. Appl. (1)

A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photon. Nanostr. Fundam. Appl. 31, 99–106 (2018).
[Crossref]

Phys. Status Solidi A (1)

C. Lin and S. Chen, “Optimized dielectric film for maximum sensitivity of nearly guided-wave surface plasmon resonance sensor,” Phys. Status Solidi A 215, 1700499 (2018).
[Crossref]

Plasmonics (1)

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

Proc. SPIE (1)

G. B. Smith, A. Lahav, A. Lakhtakia, M. Auslender, and I. Abdulhalim, “Sensitivity enhancement of guided wave surface plasmon resonance sensors using top nano dielectric layer,” Proc. SPIE 7041, 70410A (2008).
[Crossref]

Rev. Mod. Phys. (1)

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[Crossref]

Sens. Actuators A Phys. (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159, 24–32 (2010).
[Crossref]

Sens. Actuators A, Phys. (1)

R. Jha and A. K. Sharma, “Design considerations for plasmonic-excitation based optical detection of liquid and gas media in infrared,” Sens. Actuators A, Phys. 165, 271–275 (2011).
[Crossref]

Sens. Actuators B Chem. (8)

A. K. Mishra and S. K. Mishra, “Gas sensing in Kretschmann configuration utilizing bi-metallic layer of rhodium-silver in visible region,” Sens. Actuators B Chem. 237, 969–973 (2016).
[Crossref]

L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, and D. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548(2017).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B Chem. 169, 161–166 (2012).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B Chem. 207, 801–810 (2015).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B Chem. 107, 40–46 (2005).
[Crossref]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B Chem. 174, 94–101 (2012).
[Crossref]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B Chem. 114, 1028–1034 (2006).
[Crossref]

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B Chem. 190, 494–501 (2014).
[Crossref]

Sens. Lett. (1)

M. B. Hossain and M. M. Rana, “Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization,” Sens. Lett. 14, 145–152 (2016).
[Crossref]

Sensors (1)

Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors 14, 4948–4959 (2014).
[Crossref]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

Z. Naturforsch. Teil A (1)

E. Kretschmann and H. Raether, “Notizen: radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
[Crossref]

Z. Phys. A (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. A 216, 398–410 (1968).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Y. Ajiki, T. Kan, K. Matsumoto, and I. Shimoyama, “SPR photo diode detector using transportation phenomenon of photon and electron coupling,” in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1915–1918.

K. T. Lin, Y. M. Chi, H. L. Chen, S. C. Tseng, H. M. Chang, Y. C. Liao, S. H. Chen, and Y. S. Lai, “Enhanced efficiency of silicon-based solar cell by surface plasmon resonance effects over device electrode,” in 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (Am-Fpd) (2014), pp. 307–310.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of a bimetallic barium titanate–graphene based SPR biosensor.
Fig. 2.
Fig. 2. Minimum reflectivity in SPR curve as a function of the number of graphene layers with various thicknesses of the gold layer, (a) 0 nm, (b) 1 nm, (c) 3 nm, and (d) 5 nm, and different thicknesses of the silver layer.
Fig. 3.
Fig. 3. Corresponding changes in resonance angle in SPR curve as a function of the number of graphene layers with various thicknesses of the gold layer, (a) 0 nm, (b) 1 nm, (c) 3 nm, and (d) 5 nm, and different thicknesses of the silver layer.
Fig. 4.
Fig. 4. Variation of the reflectance with respect to the incident angle for (a) conventional biosensor based on single metal–Ag film, (b) conventional biosensor with 10-nm-thick barium titanate, and (c) proposed Ag–Au bimetallic SPR biosensor configuration with 10 nm barium titanate and monolayer graphene. (Insets: schematic diagrams of biosensor structures.)
Fig. 5.
Fig. 5. (a) Reflectance curves as a function of incident angle with different numbers of graphene layers. (b) Variation of sensitivity with different numbers of graphene layers under the optimal structure parameters (dAg=40nm, dAu=3nm, dBaTiO3=10nm).
Fig. 6.
Fig. 6. Sensitivity variation of single metal and bimetallic SPR biosensors for monolayer graphene (L=1) with the thickness (d3) of BaTiO3 layer at ns=1.33 and ns=1.34.
Fig. 7.
Fig. 7. (a),(b) Electric field distributions of single metal and bimetallic biosensors for ns=1.33.
Fig. 8.
Fig. 8. (a) Change in resonance angle (Δθres) related to the change in refractive index of the sensing medium (Δn). (b) Variation of sensitivity with respect to the refractive index of the sensing medium for the conventional, single metal, and proposed bimetallic SPR biosensors.

Tables (2)

Tables Icon

Table 1. Arrangement of the Values of the Minimum Reflectivity (Rmin), Change in Resonance Angle (Δθres), Sensitivity (S), Half Maximum (FWHM) of the Reflectivity Curves, and Figure of Merit (FOM) for the Proposed Bimetallic SPR Biosensor

Tables Icon

Table 2. Sensitivity, FWHM, and FOM Comparisons of Different Reported SPR Biosensors

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

nBK7=(1.03961212λ2λ20.00600069867+0.231792344λ2λ20.0200179144+1.01046954λ2λ2103.560653+1)1/2,
nm=εm=[1λ2λcλp2(λc+iλ)]1/2,
nG=3.0+iC13λ,
dG=L×0.34,
ns=1.33+Δn,
[U1V1]=M[UN1VN1],
M=k=2N1Mk=(M11M12M21M22),
Mk=(cosβk(isinβk)/qkiqksinβkcosβk),
qk=(μkεk)1/2cosθk=(εkn12sinθ12)1/2εk
βk=2πλnkcosθk(zkzk1)2πdkλ(εkn12sinθ12)1/2.
rp=(M11+M12qN)q1(M21+M22qN)(M11+M12qN)q1+(M21+M22qN).
Rp=|rp|2.
S=ΔθresΔn.

Metrics