Abstract

Liquid crystalline materials with a cycloidal molecular orientation pattern are attractive for fabricating diffractive waveplates, diffracting incident light regardless of its polarization state into left- and/or right-circularly polarized light only in the +1st and/or 1st orders, applicable as next-generation optical devices. However, large-area high-speed processing of such molecular orientation is a challenge, since even state-of-the-art photoalignment methods require a precise spatial modulation of the polarization states of incident light, e.g., polarization holograms. Here, we propose and demonstrate that unpolarized light could easily generate cycloidal molecular orientation patterns over large areas in a single step merely by using our recently developed method of “scanning wave photopolymerization” with a simple optical setup. Importantly, the processing time for fabricating millimeter-scale films was significantly decreased to less than a few minutes. Detailed investigation revealed that the resultant film showed the desired diffraction behavior with a diffraction efficiency of 50%.

© 2019 Optical Society of America

Full Article  |  PDF Article

Corrections

16 April 2019: A correction was made to the title.


OSA Recommended Articles
Direct fabrication of a q-plate array by scanning wave photopolymerization

Miho Aizawa, Megumi Ota, Kyohei Hisano, Norihisa Akamatsu, Takeo Sasaki, Christopher J. Barrett, and Atsushi Shishido
J. Opt. Soc. Am. B 36(5) D47-D51 (2019)

Interference-free and single exposure to generate continuous cycloidal alignment for large-area liquid crystal devices

Da Chen, Huijie Zhao, Kexin Yan, Dong Xu, Qi Guo, Linghao Sun, Fan Wu, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Express 27(20) 29332-29339 (2019)

Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1       Irradiated optical pattern with a periodically arranged rod shape.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription