Abstract

This paper compares plasmon nanolasing and corresponding ultrafast dynamics supported by Al and Au nanoparticle arrays. By tuning nanoparticle size, we achieved high-quality surface lattice resonances from both dipolar lattice plasmons and hybrid quadrupolar lattice plasmons at near-infrared wavelengths. We demonstrated that the dipolar and hybrid quadrupolar lattice modes can serve as optical feedback for plasmonic nanolasing. Even at the wavelength of its interband transition, Al showed nanolasing properties similar to Au. Also, independent of the type of cavity mode used as optical feedback, Al lattice plasmon lasing showed thresholds and ultrafast dynamics similar to Au.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays

Dmitry Khlopin, Frédéric Laux, William P. Wardley, Jérôme Martin, Gregory A. Wurtz, Jérôme Plain, Nicolas Bonod, Anatoly V. Zayats, Wayne Dickson, and Davy Gérard
J. Opt. Soc. Am. B 34(3) 691-700 (2017)

Lasing action in periodic arrays of nanoparticles

Montacer Dridi and George C. Schatz
J. Opt. Soc. Am. B 32(5) 818-823 (2015)

Effect of plasmonic mode on plasmon-based lasers

Montacer Dridi, Florent Colas, and Chantal Compère
J. Opt. Soc. Am. B 35(12) 3110-3115 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
    [Crossref]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).
  3. A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
    [Crossref]
  4. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref]
  5. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
    [Crossref]
  6. G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
    [Crossref]
  7. D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
    [Crossref]
  8. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref]
  9. A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
    [Crossref]
  10. X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
    [Crossref]
  11. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
    [Crossref]
  12. D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
    [Crossref]
  13. M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D 48, 184004 (2014).
    [Crossref]
  14. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  15. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
    [Crossref]
  16. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
    [Crossref]
  17. D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2014).
    [Crossref]
  18. J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
    [Crossref]
  19. M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
    [Crossref]
  20. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  21. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  22. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
    [Crossref]
  23. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  24. F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
    [Crossref]
  25. V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
    [Crossref]
  26. D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
    [Crossref]
  27. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
    [Crossref]
  28. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [Crossref]
  29. S. Babar and J. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
    [Crossref]
  30. A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
    [Crossref]
  31. M. Dridi and G. C. Schatz, “Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain,” J. Opt. Soc. Am. B 30, 2791–2797 (2013).
    [Crossref]

2018 (2)

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

2017 (3)

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

2016 (1)

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

2015 (2)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

S. Babar and J. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
[Crossref]

2014 (5)

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D 48, 184004 (2014).
[Crossref]

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2014).
[Crossref]

2013 (3)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

M. Dridi and G. C. Schatz, “Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain,” J. Opt. Soc. Am. B 30, 2791–2797 (2013).
[Crossref]

2012 (1)

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

2011 (2)

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

2010 (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

2009 (3)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

2007 (1)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[Crossref]

2006 (1)

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

2003 (1)

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

1985 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Alexander, R. W.

Babar, S.

Barnes, W. L.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Barton, J. E.

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

Bell, R. J.

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Bourgeois, M. R.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Brandi, F.

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Brinks, D.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

Byer, R. L.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Castro-Lopez, M.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

Chang-Hasnain, C. J.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

M. Dridi and G. C. Schatz, “Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain,” J. Opt. Soc. Am. B 30, 2791–2797 (2013).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Forrest, S. R.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Gérard, D.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2014).
[Crossref]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Giannini, V.

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Gray, S. K.

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2014).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Hasan, W.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

Henzie, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[Crossref]

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Hogervorst, W.

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Hryn, A. J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Hu, J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Hua, Y.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

Humphrey, A. D.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

Huntington, M. D.

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Knudson, M. P.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

Koenderink, A. F.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Kogelnik, H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Kressel, H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Lee, J.

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

Lee, M. H.

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[Crossref]

Lee, W.-K.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Li, R.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

Liu, D.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Long, L. L.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Neshev, D.

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[Crossref]

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

Ordal, M. A.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Querry, M. R.

Ramezani, M.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

Rivas, J. G.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

Ross, M. B.

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D 48, 184004 (2014).
[Crossref]

Sapienza, R.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

Schaller, R. D.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

Schatz, G. C.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D 48, 184004 (2014).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

M. Dridi and G. C. Schatz, “Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain,” J. Opt. Soc. Am. B 30, 2791–2797 (2013).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).

Schokker, A. H.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shi, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Shi, X.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Sorger, V. J.

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Stender, C. L.

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Sun, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Tearney, G. J.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

Townes, C. H.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Trivedi, D.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

Ubachs, W.

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

van Hulst, N. F.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

Vecchi, G.

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

Velchev, I.

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Wang, D.

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

Wang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Wang, Z.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Weaver, J.

Wei, S.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Willner, A. E.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Yang, A.

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Yang, J.-C.

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zervas, M. N.

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Zhang, X.

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, Y.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).

Zhou, J.

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

Acc. Chem. Res. (1)

J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, “Large-area nanoscale patterning: chemistry meets fabrication,” Acc. Chem. Res. 39, 249–257 (2006).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Adv. Opt. Mater. (1)

X. Shi, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, and J. Shi, “Random lasing with a high quality factor over the whole visible range based on cascade energy transfer,” Adv. Opt. Mater. 2, 88–93 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (1)

J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009).
[Crossref]

Appl. Opt. (2)

Chem. Rev. (1)

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (2)

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D 48, 184004 (2014).
[Crossref]

D. Gérard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2014).
[Crossref]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Mater. Today (2)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2017).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Nano Lett. (3)

D. Wang, M. R. Bourgeois, W.-K. Lee, R. Li, D. Trivedi, M. P. Knudson, W. Wang, G. C. Schatz, and T. W. Odom, “Stretchable nanolasing from hybrid quadrupole plasmons,” Nano Lett. 18, 4549–4555(2018).
[Crossref]

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,” Nano Lett. 11, 4674–4678 (2011).
[Crossref]

M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, “Programmable soft lithography: solvent-assisted nanoscale embossing,” Nano Lett. 11, 311–315 (2010).
[Crossref]

Nat. Commun. (1)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Nat. Nanotechnol. (3)

D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, “Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices,” Nat. Nanotechnol. 12, 889–894 (2017).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2, 549–554 (2007).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Phys. Rev. B (4)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

G. Vecchi, V. Giannini, and J. G. Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Proc. IEEE (1)

A. E. Willner, R. L. Byer, C. J. Chang-Hasnain, S. R. Forrest, H. Kressel, H. Kogelnik, G. J. Tearney, C. H. Townes, and M. N. Zervas, “Optics and photonics: key enabling technologies,” Proc. IEEE 100, 1604–1643 (2012).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

F. Brandi, I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “A narrow-band wavelength-tunable laser system delivering high-energy 300 ps pulses in the near-infrared,” Rev. Sci. Instrum. 74, 32–37 (2003).
[Crossref]

Science (1)

V. J. Sorger and X. Zhang, “Spotlight on plasmon lasers,” Science 333, 709–710 (2011).
[Crossref]

Other (2)

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment (ACS, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. DL nanolasing from Al and Au NPs. (a) SEM images of Au and Al NP array (NP spacing a 0 = 580 nm , average diameter d = 110 nm with height h = 50 nm ). (b) The DL modes of Al and Au NP arrays overlapped with the red side of LDS 765 dye emission. Transmission spectra of Au was shifted down 30%. The lasing spectrum of Au NPs was shifted down for clarity. (c) Charge distribution of Al and Au NP at DL resonances (Au, 844 nm; Al, 840 nm). Measured emission spectra with (d) Al NP array and (e) Au NP array with increased pump power (concentration C = 4 mM ; solvent, DMSO). Light–light curves were inserted.
Fig. 2.
Fig. 2. Power-dependent lasing dynamics for DL modes. Time-correlated single-photon counting images (wavelength range: 800 to 820 nm) and corresponding processed data showing lasing decay lifetime for DL lasing from Al and Au NP arrays (a) above threshold and (b) at highest pump power ( 0.61 mJ / cm 2 ).
Fig. 3.
Fig. 3. Simulated DL lasing from Al NP dynamics under different pump powers. (a) Power-dependent population inversion changes with time of DL lasing from Al NPs. (b) Spatial distributions of stimulated and spontaneous emission rates above DL lasing from Al NPs threshold. Scale bar is 100 nm.
Fig. 4.
Fig. 4. HQL nanolasing from Al and Au NP arrays. (a) SEM images of Al and Au NP array (NP spacing a 0 = 560 nm , average diameter d = 220 nm with height h = 120 nm ). (b) The HQL modes of Al and Au NP arrays overlapped with the red side of LDS 765 dye emission. Transmission spectra of Au was shifted down 30%. The lasing spectrum of Au NPs was shifted down for clarity. (c) Charge distribution of Al and Au NPs at HQL resonances (Au, 813 nm; Al, 809 nm). Measured emission spectra with (d) Al NP array and (e) Au NP array with increased pump power (concentration C = 4 mM ; solvent, DMSO). Light–light curves were inserted.
Fig. 5.
Fig. 5. Power-dependent lasing dynamics for HQL lasing. Time-correlated single-photon counting images (wavelength range from bottom to top: 800–820 nm) and corresponding processed data showing lasing decay lifetime for HQL lasing from Al and Au NPs (a) around threshold and (b) at highest pump power ( 0.96 mJ / cm 2 ).
Fig. 6.
Fig. 6. Al and Au NP arrays both showed sharp DL resonances at NIR wavelength. Transmission spectra of Al and Au NP arrays (NP spacing a 0 = 580 nm , average diameter d = 110 nm with height h = 50 nm ). The spectrum of the Al NP array was shifted down 40% for clarification (spacing a 0 = 580 nm , average diameter d = 110 nm with height h = 50 nm ). The spectrum of the Al NP array was shifted down 40% for clarification.
Fig. 7.
Fig. 7. Near-field electric intensity distributions of Al and Au NPs at DL resonance.
Fig. 8.
Fig. 8. Beam profiles show directional and confined DL lasing spots from Al and Au NP arrays ( < 1 ° divergence angle).
Fig. 9.
Fig. 9. Time-resolved photoluminescence of LDS 765 dye ( C = 4 mM ) dissolved in DMSO suggested around 400 ps decay lifetime.
Fig. 10.
Fig. 10. Time zero set to detect lasing emission signal. (a) Above lasing threshold, the time zero was set around 150 ps. (b) At high pump power, the time zero was set around 20 ps.
Fig. 11.
Fig. 11. Power- and time-dependent population inversion evolution of Au DL lasing.
Fig. 12.
Fig. 12. Cross SEM images of an Al NP array show the truncated cone structure (scale bar is 1 μm).
Fig. 13.
Fig. 13. Al and Au NP arrays both can support sharp HQL resonances. Transmission spectra of fabricated Al and Au NP arrays at HQL modes. The spectrum of the Au NP array was shifted up 40% for clarification.
Fig. 14.
Fig. 14. Extinction of single Al and Au NP (diameter d = 220 nm , height h = 120 nm ). The quadrupole and dipole LSPs of a single Al NP are both shorter in wavelength than those of a Au NP.
Fig. 15.
Fig. 15. Distinct energy dissipation channels of Al and Au NP arrays. (a) Scattering spectra and (b) absorption spectra of Al and Au NP arrays. Spectra for Au NPs were shifted up 30% along the y axis.
Fig. 16.
Fig. 16. Beam profiles show directional and confined HQL lasing spots from Al and Au NP arrays ( < 1 ° divergence angle).
Fig. 17.
Fig. 17. Au NP array shows stronger near-field intensity than the Al NP array at HQL resonance.
Fig. 18.
Fig. 18. Simulated emission intensity at different mark positions near NPs (10 nm away from NP edge and 20 nm away from NP edge).
Fig. 19.
Fig. 19. Power-dependent population inversion changes over time for HQL lasing. (a) Power-dependent population inversion changes over time for Au and Al HQL lasing. (b) Spatial distributions of stimulated and spontaneous emission rates above (top panel) and below (bottom panel) Al HQL lasing threshold.

Metrics