Abstract

In this work, we discuss excitation of orthogonal and parallel collective resonances in rectangular arrays of aluminum nanoparticles and switch between them with a change of array dimensions or polarization. We demonstrate that in the case of the substrate, scattered fields from nanoparticles can interact with each other in directions both parallel and orthogonal to the external electric field, which results in manifestation of the parallel coupling when localized plasmon resonance is near its spectral position. In this work, the parallel diffraction waves couple with in-plane quadrupolar mode excited with a scattered field coming from the neighboring nanoparticles. The rate of the parallel coupling depends on the interparticle distance, which allows us to control the intensity of the coupled mode.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays

Christopher P. Burrows and William L. Barnes
Opt. Express 18(3) 3187-3198 (2010)

Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin
J. Opt. Soc. Am. B 29(1) 88-100 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref]
  2. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
    [Crossref]
  3. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [Crossref]
  4. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
    [Crossref]
  5. J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
    [Crossref]
  6. D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
    [Crossref]
  7. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34, 691–700 (2017).
    [Crossref]
  8. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
    [Crossref]
  9. M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
    [Crossref]
  10. J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
    [Crossref]
  11. A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
    [Crossref]
  12. P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
    [Crossref]
  13. N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
    [Crossref]
  14. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
    [Crossref]
  15. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
    [Crossref]
  16. R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
    [Crossref]
  17. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
    [Crossref]
  18. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref]
  19. A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
    [Crossref]
  20. L. Lin and Y. Yi, “Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays,” Opt. Express 23, 130–142 (2015).
    [Crossref]
  21. A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
    [Crossref]
  22. V. E. Babicheva and A. B. Evlyukhin, “Metasurfaces with electric quadrupole and magnetic dipole resonant coupling,” ACS Photon. 5, 2022–2033 (2018).
    [Crossref]
  23. V. E. Babicheva and A. B. Evlyukhin, “Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices,” MRS Commun. 8, 712–717 (2018).
    [Crossref]
  24. S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95, 195406 (2017).
    [Crossref]
  25. S. M. Sadeghi, A. Dagallier, A. Hatef, and M. Meunier, “Collective modes in multipolar plasmonic lattices: control of interparticle-gap upward/downward energy streams,” J. Opt. Soc. Am. B 33, 1502–1510 (2016).
    [Crossref]
  26. A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
    [Crossref]
  27. L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
    [Crossref]
  28. A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
    [Crossref]
  29. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref]
  30. M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
    [Crossref]

2018 (6)

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

V. E. Babicheva and A. B. Evlyukhin, “Metasurfaces with electric quadrupole and magnetic dipole resonant coupling,” ACS Photon. 5, 2022–2033 (2018).
[Crossref]

V. E. Babicheva and A. B. Evlyukhin, “Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices,” MRS Commun. 8, 712–717 (2018).
[Crossref]

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
[Crossref]

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

2017 (6)

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95, 195406 (2017).
[Crossref]

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34, 691–700 (2017).
[Crossref]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

2016 (3)

M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

S. M. Sadeghi, A. Dagallier, A. Hatef, and M. Meunier, “Collective modes in multipolar plasmonic lattices: control of interparticle-gap upward/downward energy streams,” J. Opt. Soc. Am. B 33, 1502–1510 (2016).
[Crossref]

2015 (4)

L. Lin and Y. Yi, “Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays,” Opt. Express 23, 130–142 (2015).
[Crossref]

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref]

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

2014 (3)

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

2013 (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

2012 (1)

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref]

2010 (1)

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

2008 (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

2006 (1)

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Adam, P.-M.

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

Aigouy, L.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

Akjouj, A.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

Amendola, V.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Babicheva, V. E.

V. E. Babicheva and A. B. Evlyukhin, “Metasurfaces with electric quadrupole and magnetic dipole resonant coupling,” ACS Photon. 5, 2022–2033 (2018).
[Crossref]

V. E. Babicheva and A. B. Evlyukhin, “Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices,” MRS Commun. 8, 712–717 (2018).
[Crossref]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Baudrion, A.-L.

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
[Crossref]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

Benoit, J.-M.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Berthelot, A.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Bonod, N.

Bouhafs, B.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

Bourgeois, M. R.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Calabi, F.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Caputo, R.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

Cinagolani, R.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Colas des Francs, G.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Dagallier, A.

de Vittorio, M.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

DeJarnette, D.

Della Sala, F.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Della Torre, A.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Dickson, W.

Ditlbacher, H.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Evlyukhin, A. B.

V. E. Babicheva and A. B. Evlyukhin, “Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices,” MRS Commun. 8, 712–717 (2018).
[Crossref]

V. E. Babicheva and A. B. Evlyukhin, “Metasurfaces with electric quadrupole and magnetic dipole resonant coupling,” ACS Photon. 5, 2022–2033 (2018).
[Crossref]

Frasconi, M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

García De Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

García-Martín, J. M.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

Gerard, D.

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

Gérard, D.

Gontier, A.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

González, M. U.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

Gray, S. K.

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

Guo, R.

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

Hakala, T. K.

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Harbin, B.

Hatef, A.

Hohenau, A.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Hohenester, U.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Hryn, A. J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Hu, J.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Humphrey, A. D.

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

Iatì, A. M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

Khlopin, D.

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

Krenn, J. R.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Krug, M. K.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Laux, F.

Laverdant, J.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Lee, W.-K.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Lévêque, G.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

Lin, L.

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref]

L. Lin and Y. Yi, “Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays,” Opt. Express 23, 130–142 (2015).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

Mahi, N.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

Manna, L.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Marae-Djouda, J.

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

Maragò, O. M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

Margueritat, J.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Martin, J.

Martiradonna, L.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Mascart, R.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Maurer, T.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

Meunier, M.

Mirkin, C.

M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Movsesyan, A.

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Pilot, R.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

Plain, J.

Pompa, P. P.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Prieto, P.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Ramezani, M.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Reisecker, M.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Rinaldi, R.

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Rivas, J. G.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Roper, D. K.

Ross, M.

M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Sadeghi, S. M.

Saison, O.

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

Schatz, G.

M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Schatz, G. C.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Sipe, J. E.

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95, 195406 (2017).
[Crossref]

Swiecicki, S. D.

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95, 195406 (2017).
[Crossref]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
[Crossref]

Trügler, A.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Varguet, H.

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Vitrey, A.

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Wardley, W. P.

Wurtz, G. A.

Yang, A.

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Yi, Y.

Zayats, A. V.

Zheng, Y.

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8, 834–840 (2013).
[Crossref]

ACS Photon. (1)

V. E. Babicheva and A. B. Evlyukhin, “Metasurfaces with electric quadrupole and magnetic dipole resonant coupling,” ACS Photon. 5, 2022–2033 (2018).
[Crossref]

Appl. Phys. Lett. (1)

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105, 171103 (2014).
[Crossref]

Chem. Rev. (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. C (3)

A. Movsesyan, A.-L. Baudrion, and P.-M. Adam, “Revealing the hidden plasmonic modes of a gold nanocylinder,” J. Phys. Chem. C 122, 23651–23658 (2018).
[Crossref]

N. Mahi, G. Lévêque, O. Saison, J. Marae-Djouda, R. Caputo, A. Gontier, T. Maurer, P.-M. Adam, B. Bouhafs, and A. Akjouj, “In depth investigation of lattice plasmon modes in substrate-supported gratings of metal monomers and dimers,” J. Phys. Chem. C 121, 2388–2401 (2017).
[Crossref]

M. Ross, C. Mirkin, and G. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

J. Phys. Condens. Matter (1)

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and A. M. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref]

J. Phys. D (2)

J. Martin and J. Plain, “Fabrication of aluminium nanostructures for plasmonics,” J. Phys. D 48, 184002 (2015).
[Crossref]

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D 48, 184001 (2015).
[Crossref]

Mater. Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

MRS Commun. (1)

V. E. Babicheva and A. B. Evlyukhin, “Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices,” MRS Commun. 8, 712–717 (2018).
[Crossref]

Nano Lett. (2)

A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, “Parallel collective resonances in arrays of gold nanorods,” Nano Lett. 14, 2079–2085 (2014).
[Crossref]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref]

Nanophotonics (1)

J. Marae-Djouda, R. Caputo, N. Mahi, G. Lévêque, A. Akjouj, P.-M. Adam, and T. Maurer, “Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit,” Nanophotonics 6, 279–288 (2017).
[Crossref]

Nanoscale (1)

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref]

Nanotechnology (1)

A. Berthelot, G. Colas des Francs, H. Varguet, J. Margueritat, R. Mascart, J.-M. Benoit, and J. Laverdant, “From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semicontinous metal films,” Nanotechnology 30, 015706 (2018).
[Crossref]

Nat. Commun. (1)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref]

Nat. Nanotechnol. (1)

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. de Vittorio, F. Calabi, R. Cinagolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

A. D. Humphrey and W. L. Barnes, “Plasmonic surface lattice resonances on arrays of different lattice symmetry,” Phys. Rev. B 90, 075404 (2014).
[Crossref]

R. Guo, T. K. Hakala, and P. Törmä, “Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays,” Phys. Rev. B 95, 155423 (2017).
[Crossref]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García De Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

S. D. Swiecicki and J. E. Sipe, “Surface-lattice resonances in two-dimensional arrays of spheres: multipolar interactions and a mode analysis,” Phys. Rev. B 95, 195406 (2017).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. Yang, A. J. Hryn, M. R. Bourgeois, W.-K. Lee, J. Hu, G. C. Schatz, and T. W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. USA 113, 14201–14206 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental (a) and simulated (b) extinction spectra of the array of Al nanoparticles (lattice 420nm×216nm) for two orthogonal polarizations. Inset: calculated extinction spectrum of the single Al nanocylinder (NC) on glass (diameter, 150 nm; height, 50 nm) (b). SEM image of the array (c). Electric field maps for TE polarization at the resonance wavelength (420 nm) in xz (d) cuts and xy (e). Map of the vertical component of the electric field Ez (f).
Fig. 2.
Fig. 2. (a) Scheme of the dipolar radiative couplings between the metallic nanoparticles in homogeneous environment, (b) radiative scattering pattern of an Al nanocylinder on substrate excited at 420 nm, and (c) scheme of the radiative couplings between the metallic nanoparticles in heterogeneous environment.
Fig. 3.
Fig. 3. Extinction map for the array of nanoparticles. X pitch was fixed at 420 nm. Y pitch was varied from 180 nm to 420 nm. Polarization of the incident field is along the y axis (a) or x direction (b).
Fig. 4.
Fig. 4. (a) Extinction spectrum of the Al nanoparticles chain with interparticle distance of 420 nm [polarization along the axis connecting nanoparticles (TE)]. (b) Scheme of the far-field distribution of the scattering of an Al nanocylinder excited at 420 nm. The colored sections (yellow and pink) show the integral energy that excites the neighboring nanoparticles. (c) Illustration of the simulation scheme. Left nanocylinder is excited with an incident light that is limited spatially around it. The right nanoparticle is excited only by the scattered field from the left nanocylinder. Polarization of the incident field (along x) is perpendicular to the axis connecting nanoparticles (along y). (d) Absorption spectral map for the right nanoparticle excited by the scattered field of the left nanocylinder depending on the interparticle distance. Inset shows the charge distribution for the right nanocylinder at 378 nm. (e) Extraction from the extinction map for the array of nanoparticles [Fig. 3(b)] (TE polarization) at 420 nm and from the absorption spectral map (d) at 420 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λRi,j=n(i2dx2+j2dy2)1/2,

Metrics