Abstract

An ultra-broadband and compact TE-pass polarizer assisted by contra-directional coupling is proposed, which consists of two identical hybrid plasmonic waveguides (HPWs) and a middle strip grating waveguide (SGW). The grating pitch of the SGW is properly designed to make TM polarization satisfy the phase-matching condition. Therefore, the launched TE mode passes through the middle SGW directly with a very low propagation loss, while the launched TM mode is contra-directionally coupled to the two HPWs evenly and finally absorbed by the top metal layers. Simulation results show that the proposed polarizer has a compact coupling length of $\sim\!{16.48}\;{\rm \unicode{x00B5}{\rm m}}$, and the insertion loss, extinction ratio, and reflection loss are 0.269 dB, 27.7 dB, and $ - {16.5}\;{\rm dB}$ for the fundamental TE mode at 1550 nm, respectively. In the wavelength range of 1430–1700 nm, the ER is more than 20 dB and the IL is less than 1 dB, extending the operating spectrum to 270 nm.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers

Ahmed El-Sayed Abd-Elkader, Mohamed Farhat O. Hameed, Nihal F. F. Areed, Hossam El-Din Mostafa, and Salah S. A. Obayya
J. Opt. Soc. Am. B 36(3) 652-661 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  2. F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. F. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42, 235–238 (2017).
    [Crossref]
  3. X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform,” Opt. Express 25, 8296–8305 (2017).
    [Crossref]
  4. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23, 998–1004 (2015).
    [Crossref]
  5. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22, 2489–2496 (2014).
    [Crossref]
  6. Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photon. 1, 091304 (2016).
    [Crossref]
  7. Y. Yin, Z. Li, and D. Dai, “Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper,” J. Lightwave Technol. 35, 2227–2233 (2017).
    [Crossref]
  8. Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
    [Crossref]
  9. J. Zhang, J. Yang, L. Liang, and W. Wu, “Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating,” Opt. Commun. 407, 46–50 (2018).
    [Crossref]
  10. Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
    [Crossref]
  11. J. A. H. Odoeze, M. F. O. Hameed, H. M. H. Shalaby, and S. S. A. Obayya, “Si-core photonic crystal fiber transverse-electric pass polarizer,” J. Opt. Soc. Am. B 35, 980–986 (2018).
    [Crossref]
  12. B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
    [Crossref]
  13. J. Zhang, E. Cassan, and X. Zhang, “Wideband and compact TE-pass/TM-stop polarizer based on a hybrid plasmonic Bragg grating for silicon photonics,” J. Lightwave Technol. 32, 1383–1386 (2014).
    [Crossref]
  14. B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
    [Crossref]
  15. H. Zhu, R. Hao, and E. Li, “Ridge waveguide assisted highly efficient transverse-electric-pass polarizer based on a hybrid plasmonic waveguide,” Appl. Opt. 57, 5533–5537 (2018).
    [Crossref]
  16. A. F. Kandeel, M. F. O. Hameed, H. AbdElHamid, and S. S. A. Obayya, “CMOS-compatible hybrid bi-metallic TE/TM-pass polarizers based on ITO and ZrN,” Appl. Opt. 58, 6684–6692 (2019).
    [Crossref]
  17. A. E.-S. Abd-Elkader, M. F. O. Hameed, N. F. F. Areed, H. E.-D. Mostafa, and S. S. A. Obayya, “Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers,” J. Opt. Soc. Am. B 36, 652–661 (2019).
    [Crossref]
  18. B. Wang, S. Blaize, and R. Salas-Montiel, “Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics,” Nanoscale 11, 20685–20692 (2019).
    [Crossref]
  19. L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
    [Crossref]
  20. X. Hu and J. Wang, “Ultrabroadband compact graphene-silicon TM-pass polarizer,” IEEE Photon. J. 9, 7101310 (2017).
    [Crossref]
  21. X. Yin, X. Ke, L. Chen, T. Zhang, J. Li, Z. Zhu, and X. Li, “Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer graphene embedded silicon waveguides,” J. Lightwave Technol. 34, 3181–3187 (2016).
    [Crossref]
  22. S. Chen, F. Tian, L. Li, H. Qu, Z. Su, and J. Zhang, “Double D-shaped hole optical fiber coated with graphene as a polarizer,” Appl. Opt. 57, 7659–7666 (2018).
    [Crossref]
  23. J. Hong and W. Huang, “Contra-directional coupling in grating-assisted guided-wave devices,” J. Lightwave Technol. 10, 873–881 (1992).
    [Crossref]
  24. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21, 17904–17911 (2013).
    [Crossref]
  25. A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, and N. A. F. Jaeger, “Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers,” Opt. Lett. 43, 6041–6044 (2018).
    [Crossref]
  26. Z. Xu, T. Lyu, and X. Sun, “Compact silicon-based TM-pass/TE-dibide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide,” Opt. Commun. 451, 17–22 (2019).
    [Crossref]
  27. H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40, 1885–1887 (2015).
    [Crossref]
  28. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24, 6586–6593 (2016).
    [Crossref]
  29. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
    [Crossref]
  30. D. Oser, D. Perez-Galacho, C. Alonso-Ramos, X. Le Roux, S. Tanzilli, L. Vivien, L. Labonte, and E. Cassan, “Subwavelength engineering and asymmetry: two efficient tools for sub-nanometer-bandwidth silicon Bragg filters,” Opt. Lett. 43, 3208–3211 (2018).
    [Crossref]
  31. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
    [Crossref]
  32. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
    [Crossref]

2019 (5)

2018 (6)

2017 (6)

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

X. Hu and J. Wang, “Ultrabroadband compact graphene-silicon TM-pass polarizer,” IEEE Photon. J. 9, 7101310 (2017).
[Crossref]

F. Zhang, H. Yun, Y. Wang, Z. Lu, L. Chrostowski, and N. A. F. Jaeger, “Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends,” Opt. Lett. 42, 235–238 (2017).
[Crossref]

X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform,” Opt. Express 25, 8296–8305 (2017).
[Crossref]

Y. Yin, Z. Li, and D. Dai, “Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper,” J. Lightwave Technol. 35, 2227–2233 (2017).
[Crossref]

2016 (3)

2015 (5)

H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40, 1885–1887 (2015).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23, 998–1004 (2015).
[Crossref]

2014 (2)

2013 (3)

2011 (1)

1992 (1)

J. Hong and W. Huang, “Contra-directional coupling in grating-assisted guided-wave devices,” J. Lightwave Technol. 10, 873–881 (1992).
[Crossref]

AbdElHamid, H.

Abd-Elkader, A. E.-S.

Aitchison, J. S.

Alonso-Ramos, C.

Areed, N. F. F.

Baehr-Jones, T.

Bai, B.

B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Blaize, S.

B. Wang, S. Blaize, and R. Salas-Montiel, “Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics,” Nanoscale 11, 20685–20692 (2019).
[Crossref]

Cassan, E.

Cheben, P.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

Chen, L.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

X. Yin, X. Ke, L. Chen, T. Zhang, J. Li, Z. Zhu, and X. Li, “Ultra-broadband TE-pass polarizer using a cascade of multiple few-layer graphene embedded silicon waveguides,” J. Lightwave Technol. 34, 3181–3187 (2016).
[Crossref]

Chen, R.

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Chen, S.

Chrostowski, L.

Dai, D.

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Fang, Q.

Fard, S. T.

Flueckiger, J.

Greenberg, M.

Guan, H.

Hameed, M. F. O.

Hammood, M.

Hao, R.

He, Y.

Ho, H.-P.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Hochberg, M.

Hong, J.

J. Hong and W. Huang, “Contra-directional coupling in grating-assisted guided-wave devices,” J. Lightwave Technol. 10, 873–881 (1992).
[Crossref]

Hu, T.

Hu, X.

X. Hu and J. Wang, “Ultrabroadband compact graphene-silicon TM-pass polarizer,” IEEE Photon. J. 9, 7101310 (2017).
[Crossref]

Huang, W.

J. Hong and W. Huang, “Contra-directional coupling in grating-assisted guided-wave devices,” J. Lightwave Technol. 10, 873–881 (1992).
[Crossref]

Huang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Jaeger, N. A. F.

Jiang, G.

Jiang, X.

Kandeel, A. F.

Ke, X.

Kim, D. W.

Kim, K. H.

Kim, Y.

Labonte, L.

Le Roux, X.

Lee, M. H.

Li, E.

Li, J.

Li, L.

Li, X.

Li, Z.

Liang, L.

J. Zhang, J. Yang, L. Liang, and W. Wu, “Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating,” Opt. Commun. 407, 46–50 (2018).
[Crossref]

Lim, A. E.-J.

Lin, C.

Liu, B.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photon. 1, 091304 (2016).
[Crossref]

Liu, L.

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Liu, R.

Liu, Y.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]

Lo, G.-Q.

Lu, Z.

Lyu, T.

Z. Xu, T. Lyu, and X. Sun, “Compact silicon-based TM-pass/TE-dibide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide,” Opt. Commun. 451, 17–22 (2019).
[Crossref]

Ma, R.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

Mistry, A.

Mojahedi, M.

Mostafa, H. E.-D.

Novack, A.

Obayya, S. S. A.

Odoeze, J. A. H.

Oser, D.

Perez-Galacho, D.

Qiu, C.

Qiu, H.

Qu, H.

Salas-Montiel, R.

B. Wang, S. Blaize, and R. Salas-Montiel, “Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics,” Nanoscale 11, 20685–20692 (2019).
[Crossref]

Schmid, J. H.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

Shalaby, H. M. H.

Shao, H.

Shi, R.

Shi, W.

Shoman, H.

Soref, R. A.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photon. 1, 091304 (2016).
[Crossref]

Streshinsky, M.

Su, Y.

Su, Z.

Sun, X.

Z. Xu, T. Lyu, and X. Sun, “Compact silicon-based TM-pass/TE-dibide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide,” Opt. Commun. 451, 17–22 (2019).
[Crossref]

X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform,” Opt. Express 25, 8296–8305 (2017).
[Crossref]

Tanzilli, S.

Tian, F.

Tremblay, C.

Vivien, L.

Wang, B.

B. Wang, S. Blaize, and R. Salas-Montiel, “Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics,” Nanoscale 11, 20685–20692 (2019).
[Crossref]

Wang, G.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Wang, J.

X. Hu and J. Wang, “Ultrabroadband compact graphene-silicon TM-pass polarizer,” IEEE Photon. J. 9, 7101310 (2017).
[Crossref]

Wang, X.

Wang, Y.

Wu, D.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

Wu, J.

Wu, W.

J. Zhang, J. Yang, L. Liang, and W. Wu, “Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating,” Opt. Commun. 407, 46–50 (2018).
[Crossref]

Xiong, Y.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

Xu, D.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

Xu, Z.

Z. Xu, T. Lyu, and X. Sun, “Compact silicon-based TM-pass/TE-dibide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide,” Opt. Commun. 451, 17–22 (2019).
[Crossref]

Yang, F.

Yang, J.

Ye, H.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

Ye, W. N.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

Yin, X.

Yin, Y.

Ying, Z.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Yu, H.

Yu, P.

Yu, Z.

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

Yun, H.

Zhang, F.

Zhang, J.

Zhang, T.

Zhang, W.

Zhang, X.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

J. Zhang, E. Cassan, and X. Zhang, “Wideband and compact TE-pass/TM-stop polarizer based on a hybrid plasmonic Bragg grating for silicon photonics,” J. Lightwave Technol. 32, 1383–1386 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photon. 1, 091304 (2016).
[Crossref]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24, 6586–6593 (2016).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zhou, Z.

B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Zhu, H.

Zhu, Z.

APL Photon. (1)

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photon. 1, 091304 (2016).
[Crossref]

Appl. Opt. (3)

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE Photon. J. (3)

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7286730 (2015).
[Crossref]

L. Chen, H. Ye, Y. Liu, D. Wu, R. Ma, and Z. Yu, “Numerical investigations of a silicon photonic TE-pass polarizer consisting of alternating copper/silicon nitride layers,” IEEE Photon. J. 9, 4500709 (2017).
[Crossref]

X. Hu and J. Wang, “Ultrabroadband compact graphene-silicon TM-pass polarizer,” IEEE Photon. J. 9, 7101310 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Ying, G. Wang, X. Zhang, Y. Huang, H.-P. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

Nanoscale (1)

B. Wang, S. Blaize, and R. Salas-Montiel, “Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics,” Nanoscale 11, 20685–20692 (2019).
[Crossref]

Opt. Commun. (2)

J. Zhang, J. Yang, L. Liang, and W. Wu, “Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating,” Opt. Commun. 407, 46–50 (2018).
[Crossref]

Z. Xu, T. Lyu, and X. Sun, “Compact silicon-based TM-pass/TE-dibide polarization beam splitter using contra-directional grating couplers assisted by horizontal slot waveguide,” Opt. Commun. 451, 17–22 (2019).
[Crossref]

Opt. Express (7)

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21, 3633–3650 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21, 6733–6738 (2013).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22, 2489–2496 (2014).
[Crossref]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21, 17904–17911 (2013).
[Crossref]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23, 998–1004 (2015).
[Crossref]

X. Sun, J. S. Aitchison, and M. Mojahedi, “Realization of an ultra-compact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform,” Opt. Express 25, 8296–8305 (2017).
[Crossref]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24, 6586–6593 (2016).
[Crossref]

Opt. Lett. (5)

Photon. Res. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the proposed TE-pass polarizer. Inset: cross-sectional view at input position.
Fig. 2.
Fig. 2. Calculated effective indices of the fundamental TM(TE) polarization as a function of wavelength. Here ${n_S}$ ($n_S^{\prime }$) and ${n_H}$ ($n_H^{\prime }$) are the effective indices of the TM (TE) mode in SGW and HPW.
Fig. 3.
Fig. 3. ER, IL, and RL as functions of the wavelength of the designed TE-pass polarizer.
Fig. 4.
Fig. 4. Optical power distribution in the designed TE-pass polarizer for the fundamental TE and TM polarization input.
Fig. 5.
Fig. 5. IL and ER of the proposed polarizer as functions of the wavelength and SGW width variation $\Delta {w_1}$. (a) IL and (b) ER of the input TE polarization.
Fig. 6.
Fig. 6. IL and ER of the proposed polarizer as functions of the wavelength and HPW width variation $\Delta {w_2}$. (a) IL and (b) ER of the input TE polarization.
Fig. 7.
Fig. 7. IL and ER of the proposed polarizer as functions of the wavelength and grating pitch variation $\Delta \Lambda $. (a) IL and (b) ER of the input TE polarization.

Tables (1)

Tables Icon

Table 1. Comparison between Various On-Chip Polarizers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ D / 2 Λ = ( n S + n H ) / 2 ,
I L ( d B ) = 10 log 10 P T E o P T E i ,
E R ( d B ) = 10 log 10 P T E o P T M o ,
R L ( d B ) = 10 log 10 P T E r P T E i ,

Metrics