Abstract

The performance of on-chip gas sensors based on light absorption is mainly determined by the light–gas interaction. In this paper, slow-light Bloch slot waveguides (BSW) are proposed to improve sensing performance. The sensing performance is enhanced in two mechanisms. On the one hand, light is confined in the slot to increase the overlap of the mode field and the gas; on the other hand, the slow-light effect is achieved by adjusting the subwavelength grating period to increase the group index. By joint engineering the evanescent fields and group index, for a low pump power of 10 mW and a propagation loss of 3 dB/cm, the detection limit of 0.034 ppm in the near-infrared and the detection limit of 0.29 ppm in the mid-infrared at the optimum propagation length of 1.45 cm are obtained, respectively. The proposed BSW provides a promising platform for high-performance gas sensing.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive and ultrasmall sample volume gas sensor based on a sealed slot waveguide

Yingying Qiao, Jifang Tao, Jifang Qiu, Xiaobin Hong, and Jian Wu
Appl. Opt. 58(17) 4708-4713 (2019)

On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide

Wei-Cheng Lai, Swapnajit Chakravarty, Xiaolong Wang, Cheyun Lin, and Ray T. Chen
Opt. Lett. 36(6) 984-986 (2011)

Hybrid silicon slotted photonic crystal waveguides: how does third order nonlinear performance scale with slow light?

Junfei Xia, Samuel Serna, Weiwei Zhang, Laurent Vivien, and Éric Cassan
Photon. Res. 4(6) 257-261 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
    [Crossref]
  2. S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
    [Crossref]
  3. F. A. Harraz, “Porous silicon chemical sensors and biosensors: a review,” Sens. Actuators B Chem. 202, 897–912 (2014).
    [Crossref]
  4. B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
    [Crossref]
  5. B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
    [Crossref]
  6. A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
    [Crossref]
  7. D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5, 1046–1054 (2018).
    [Crossref]
  8. T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
    [Crossref]
  9. L. Tombez, E. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
    [Crossref]
  10. Q. Liu, J. Ramiez, V. Vakarin, X. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  µm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
    [Crossref]
  11. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011).
    [Crossref]
  12. Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
    [Crossref]
  13. A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
    [Crossref]
  14. A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
    [Crossref]
  15. Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
    [Crossref]
  16. M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
    [Crossref]
  17. Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
    [Crossref]
  18. Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
    [Crossref]
  19. N. A. Mortensen and S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007).
    [Crossref]
  20. P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
    [Crossref]
  21. M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
    [Crossref]
  22. Y. Xia and G. M. Whitesides, “Soft-lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [Crossref]
  23. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. (Int. Ed.) 37, 550–575 (1998).
    [Crossref]

2019 (5)

T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
[Crossref]

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

2018 (4)

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Q. Liu, J. Ramiez, V. Vakarin, X. Roux, A. Ballabio, J. Frigerio, D. Chrastina, G. Isella, D. Bouville, L. Vivien, C. Ramos, and D. Marris-Morini, “Mid-infrared sensing between 5.2 and 6.6  µm wavelengths using Ge-rich SiGe waveguides,” Opt. Mater. Express 8, 1305–1312 (2018).
[Crossref]

D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5, 1046–1054 (2018).
[Crossref]

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

2017 (4)

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

L. Tombez, E. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
[Crossref]

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
[Crossref]

2016 (2)

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

2014 (1)

F. A. Harraz, “Porous silicon chemical sensors and biosensors: a review,” Sens. Actuators B Chem. 202, 897–912 (2014).
[Crossref]

2013 (1)

Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
[Crossref]

2011 (1)

2007 (1)

N. A. Mortensen and S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007).
[Crossref]

2004 (1)

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

2002 (1)

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[Crossref]

1998 (2)

Y. Xia and G. M. Whitesides, “Soft-lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. (Int. Ed.) 37, 550–575 (1998).
[Crossref]

Agarwal, A.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Ballabio, A.

Barh, A.

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

Baudet, E.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Bi, R.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Bodiou, L.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Boussard-Pledel, C.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Bouville, D.

Brambilla, G.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
[Crossref]

Bureau, B.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Chakravarty, S.

Chandran, S.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Charrier, J.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Chen, R. T.

Cheng, Z.

Chrastina, D.

Colas, F.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Dahlem, M. S.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Dutta, H. S.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
[Crossref]

Frigerio, J.

Gervais, A.

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

Goyal, A. K.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
[Crossref]

Green, W. M. J.

Gutierrez-Arroyo, A.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Han, Z.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Harraz, F. A.

F. A. Harraz, “Porous silicon chemical sensors and biosensors: a review,” Sens. Actuators B Chem. 202, 897–912 (2014).
[Crossref]

Hocde, S.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Hu, J.

D. M. Kita, J. Michon, S. G. Johnson, and J. Hu, “Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?” Optica 5, 1046–1054 (2018).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Huang, P.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Huang, T.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
[Crossref]

Isella, G.

Jean, P.

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

Johnson, S. G.

Kamlapurkar, S.

Keirsse, J.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Kimerling, L.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Kita, D. M.

Kumari, B.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

Lai, W. C.

LaRochelle, S.

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

Leroyer, P.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Liang, L.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Lin, C.

Lin, P.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Liu, Q.

Long, Y.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Lore, O.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Lucas, J.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Marris-Morini, D.

Martin, P. A.

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[Crossref]

Michel, K.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Michon, J.

Mortensen, N. A.

N. A. Mortensen and S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007).
[Crossref]

Nazabal, V.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Odeh, M.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Orcutt, J. S.

Pal, B. P.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

Pal, S.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
[Crossref]

Pan, J.

T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
[Crossref]

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Perry, P. S.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

T. Huang, G. Xu, J. Pan, Z. Cheng, P. S. Perry, and G. Brambilla, “Theoretical study of bicharacteristic waveguide for fundamental-mode phase-matched SHG from MIR to NIR,” Opt. Express 27, 15236–15250 (2019).
[Crossref]

Pi, M.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Ramiez, J.

Ramos, C.

Richardson, K.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Rinnert, E.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Roux, X.

Ruan, Z.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
[Crossref]

Shen, L.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
[Crossref]

Shi, W.

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

Singh, V.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Sire, O.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Sloyan, K.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Tan, D. T. H.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Tittel, F. K.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Tombez, L.

Turlin, B.

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Twayana, K.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Vakarin, V.

Varshney, R. K.

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

Villegas, J. E.

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

Vivien, L.

Wang, A.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Wang, J.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
[Crossref]

Wang, Q.

Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
[Crossref]

Wang, X.

Wang, Y.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft-lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. (Int. Ed.) 37, 550–575 (1998).
[Crossref]

Wu, X.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Wu, Y.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. (Int. Ed.) 37, 550–575 (1998).
[Crossref]

Y. Xia and G. M. Whitesides, “Soft-lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Xiao, S.

N. A. Mortensen and S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007).
[Crossref]

Xu, G.

Zeng, S.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Zhang, E.

Zhang, Y.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Zhang, Y. N.

Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
[Crossref]

Zhao, H.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Zhao, X.

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

Zhao, Y.

Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
[Crossref]

Zheng, C.

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

Zheng, S.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Z. Ruan, L. Shen, S. Zheng, and J. Wang, “Subwavelength grating slot (SWGS) waveguide on silicon platform,” Opt. Express 25, 18250–18264 (2017).
[Crossref]

Zhou, N.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Angew. Chem. (Int. Ed.) (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. (Int. Ed.) 37, 550–575 (1998).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft-lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Appl. Phys. Lett. (2)

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan, “On-chip mid- infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

N. A. Mortensen and S. Xiao, “Slow-light enhancement of Beer-Lambert-Bouguer absorption,” Appl. Phys. Lett. 90, 141108 (2007).
[Crossref]

Chem. Soc. Rev. (1)

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Gervais, P. Jean, W. Shi, and S. LaRochelle, “Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 5200308 (2019).
[Crossref]

IEEE Photon. J. (1)

M. Odeh, K. Twayana, K. Sloyan, J. E. Villegas, S. Chandran, and M. S. Dahlem, “Mode sensitivity analysis of subwavelength grating slot waveguides,” IEEE Photon. J. 11, 2700210 (2019).
[Crossref]

J. Biomed. Opt. (1)

S. Hocde, O. Lore, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

J. Opt. Soc. Am. B. (1)

P. Huang, T. Huang, S. Zeng, J. Pan, X. Wu, X. Zhao, Y. Wu, P. S. Perry, and G. Brambilla, “Nonlinear gas sensing based on third-harmonic generation in cascaded chalcogenide microfibers,” J. Opt. Soc. Am. B. 36, 300–305 (2019).
[Crossref]

J. Phys. D (1)

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D 50, 203001 (2017).
[Crossref]

Meas. Sci. Technol. (1)

Y. N. Zhang, Y. Zhao, and Q. Wang, “Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system,” Meas. Sci. Technol. 24, 105109 (2013).
[Crossref]

Nanophotonics (1)

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2  µm for chip-scale data transmission,” Nanophotonics 7, 865–871 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Sens. Actuators B Chem. (5)

M. Pi, C. Zheng, R. Bi, H. Zhao, L. Liang, Y. Zhang, Y. Wang, and F. K. Tittel, “Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect,” Sens. Actuators B Chem. 297, 126732 (2019).
[Crossref]

F. A. Harraz, “Porous silicon chemical sensors and biosensors: a review,” Sens. Actuators B Chem. 202, 897–912 (2014).
[Crossref]

B. Kumari, A. Barh, R. K. Varshney, and B. P. Pal, “Silicon-on-nitride slot waveguide: a promising platform as mid-IR trace gas sensor,” Sens. Actuators B Chem. 236, 759–764 (2016).
[Crossref]

B. Kumari, R. K. Varshney, and B. P. Pal, “Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band,” Sens. Actuators B Chem. 255, 3409–3416 (2018).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert, K. Michel, B. Bureau, F. Colas, and J. Charrier, “Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the mid-infrared,” Sens. Actuators B Chem. 242, 842–848 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Structure of the gas sensor based on the proposed BSW. (b) Cross-section view and (c) top view of the BSW.
Fig. 2.
Fig. 2. Field distributions of the fundamental ${{\rm TE}_0}$ mode at 1651 nm with ${w_{\rm Si}} = {500}\,\,{\rm nm}$, ${w_{\rm slot}} = {100}\,\,{\rm nm}$, $h = {340}\,\,{\rm nm}$, $a/\Lambda = {0.5}$, and $\Lambda = {400}\,\,{\rm nm}$. (a) Cross-section of Si segment in $XY$ plane. (b) Cross-section of the air segment in $XY$ plane. (c) One period along the propagation direction in $XZ$ plane.
Fig. 3.
Fig. 3. Photonic band structure of the proposed waveguide for ${{\rm TE}_0}$ mode with ${w_{\rm Si}} = {700}\,\,{\rm nm}$ and $\Lambda = {380}\,\,{\rm nm}$.
Fig. 4.
Fig. 4. Proposed waveguide properties of the ${{\rm TE}_0}$ mode versus the period with different waveguide widths at 1651 nm. (a) Normalized wave vector $Kz/({2}\pi /\Lambda )$. (b) Effective index ${n_{\rm eff}}$. (c) Group index ${n_g}$. (d) Evanescent power factor $\Gamma $. (e) Interaction factor $\gamma $.
Fig. 5.
Fig. 5. (a) Group index and evanescent power factor. (b) Interaction factor versus slot width ${w_{\rm slot}}$ with ${w_{\rm Si}} = {700}\,\,{\rm nm}$, $h = {340}\,\,{\rm nm}$, ${\rm a}/\Lambda = {0.5}$, and $\Lambda = {380}\,\,{\rm nm}$.
Fig. 6.
Fig. 6. (a) Variations of the DL with the waveguide length with ${\alpha _{\rm prop}} = {3}\,\,{\rm dB/cm}$. (b) DL and the optimal waveguide length ${L_{\rm opt}}$ versus different propagation loss with ${P_0} = {0.5}\,\,{\rm mW}$. (c) DL versus different pump power at ${L_{\rm opt}} = {1.45}\,\,{\rm cm}$.
Fig. 7.
Fig. 7. Proposed waveguide properties of the ${{\rm TE}_0}$ mode versus the period with different waveguide widths at 3310 nm. (a) Normalized wave vector $Kz/({2}\pi {\rm /}\Lambda )$. (b) Effective index ${n_{\rm eff}}$. (c) Group index ${n_g}$. (d) Evanescent power factor $\Gamma $. (e) Interaction factor $\gamma $.
Fig. 8.
Fig. 8. DL and the optimal waveguide length ${L_{\rm opt}}$ versus different propagation losses at 3310 nm with ${P_0} = {0.5}\,\,{\rm mW}$.
Fig. 9.
Fig. 9. Schematic of a possible fabrication of the on-chip gas chamber by PDMS.

Tables (2)

Tables Icon

Table 1. Simulated Modal Properties of the T E 0 Mode with Different Duty Cycles

Tables Icon

Table 2. Comparison of Slow-Light BSW Sensor and Other Reported Waveguide Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P = P 0 exp ( γ ε C L α p r o p L ) ,
γ = Γ n g ,
Γ = g a s P z d x d y d z t o t a l P z d x d y d z ,
S = ( P ( C ) / P ( C = 0 ) ) C = γ ε L exp ( γ ε C L ) .
L o p t = 1 γ ε C + α p r o p .
C min = ln ( 1 R E P 0 exp ( α p r o p L ) ) γ ε L ,

Metrics