Abstract

Airy array beams are attractive for optical manipulation of particles owing to their non-diffraction and auto-focusing properties. An Airy array beam is composed of $ N $ Airy beams that accelerate mutually and symmetrically in opposite directions, for different ballistics trajectories, i.e., with different initial launch angles. Based on this, we investigate the optical force distribution acting on Rayleigh particles. Results show that it is possible to obtain greater stability for optical trapping by increasing the number of beams in the array. Also, the intensity focal point and gradient and scattering force of the array on Rayleigh particles can be controlled through a launch angle parameter.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam

Hua Cheng, Weiping Zang, Wenyuan Zhou, and Jianguo Tian
Opt. Express 18(19) 20384-20394 (2010)

Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle

Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu
Opt. Express 21(20) 24413-24421 (2013)

Radiation forces on a Rayleigh particle produced by partially coherent circular Airy beams

Mingli Sun, Jiahao Zhang, Nan Li, Kaikai Huang, Huizhu Hu, Xian Zhang, and Xuanhui Lu
Opt. Express 27(20) 27777-27785 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and C. Steven, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
    [Crossref]
  3. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
    [Crossref]
  4. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
    [Crossref]
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  6. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
    [Crossref]
  7. J. Durnin, J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
    [Crossref]
  8. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [Crossref]
  9. G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [Crossref]
  10. R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
    [Crossref]
  11. T. A. Vieira, M. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37, 2034–2036 (2012).
    [Crossref]
  12. T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
    [Crossref]
  13. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
    [Crossref]
  14. H. Cheng, W. Zang, W. Zhou, and J. Tian, “Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam,” Opt. Express 18, 20384–20394 (2010).
    [Crossref]
  15. Y. Yang, W.-P. Zang, Z.-Y. Zhao, and J.-G. Tian, “Optical forces on Mie particles in an Airy evanescent field,” Opt. Express 20, 25681–25692 (2012).
    [Crossref]
  16. Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
    [Crossref]
  17. W. Lu, H. Chen, S. Liu, and Z. Lin, “Rigorous full-wave calculation of optical forces on dielectric and metallic microparticles immersed in a vector Airy beam,” Opt. Express 25, 23238–23253 (2017).
    [Crossref]
  18. R. Jáuregui and P. Quinto-Su, “On the general properties of symmetric incomplete Airy beams,” J. Opt. Soc. Am. A 31, 2484–2488 (2014).
    [Crossref]
  19. G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
    [Crossref]
  20. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35, 2260–2262 (2010).
    [Crossref]
  21. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4047 (2010).
    [Crossref]
  22. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
    [Crossref]
  23. Y. Jiang, S. Zhao, W. Yu, and X. Zhu, “Abruptly autofocusing property or circular Airy vortex beams with different launch angles,” J. Opt. Soc. Am. A 35, 890–894 (2018).
    [Crossref]
  24. P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Symmetric Airy beams,” Opt. Lett. 39, 2370–2373 (2014).
    [Crossref]
  25. C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
    [Crossref]
  26. Y. Qian, Y. Shi, W. Jin, F. Hu, and Z. Ren, “Annular arrayed-Airy beams carrying vortex arrays,” Opt. Express 27, 18085–18093 (2019).
    [Crossref]
  27. R. A. Suarez, A. A. Neves, and M. R. Gesualdi, “Generation and characterization of an array of Airy-vortex beams,” Opt. Commun. 458, 124846 (2019).
    [Crossref]
  28. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [Crossref]
  29. Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Optics Express 21, 24413–24421 (2013).
    [Crossref]
  30. Y. Jiang, Z. Cao, H. Shao, W. Zheng, B. Zeng, and X. Lu, “Trapping two types of particles by modified circular Airy beams,” Opt. Express 24, 18072–18081 (2016).
    [Crossref]
  31. Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. Christodoulides, and J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
    [Crossref]
  32. K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
    [Crossref]
  33. P. A. Quinto-Su and R. Jáuregui, “Optical stacking of microparticles in a pyramidal structure created with a symmetric cubic phase,” Opt. Express 22, 12283–12288 (2014).
    [Crossref]
  34. Y. Lan, F. Hu, and Y. Qian, “Generation of spirally accelerating optical beams,” Opt. Lett. 44, 1968–1971 (2019).
    [Crossref]
  35. Q. Lu, S. Gao, L. Sheng, J. Wu, and Y. Qiao, “Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulen,” Appl. Opt. 56, 3750–3757 (2017).
    [Crossref]
  36. A. A. R. Neves and C. L. Cesar, “Analytical calculation of optical forces on spherical particles in optical tweezers: tutorial,” J. Opt. Soc. Am. B 36, 1525–1537 (2019).
    [Crossref]
  37. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [Crossref]
  38. P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University, 2015).

2019 (4)

2018 (1)

2017 (2)

2016 (3)

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

Y. Jiang, Z. Cao, H. Shao, W. Zheng, B. Zeng, and X. Lu, “Trapping two types of particles by modified circular Airy beams,” Opt. Express 24, 18072–18081 (2016).
[Crossref]

Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
[Crossref]

2014 (6)

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Symmetric Airy beams,” Opt. Lett. 39, 2370–2373 (2014).
[Crossref]

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
[Crossref]

P. A. Quinto-Su and R. Jáuregui, “Optical stacking of microparticles in a pyramidal structure created with a symmetric cubic phase,” Opt. Express 22, 12283–12288 (2014).
[Crossref]

T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
[Crossref]

R. Jáuregui and P. Quinto-Su, “On the general properties of symmetric incomplete Airy beams,” J. Opt. Soc. Am. A 31, 2484–2488 (2014).
[Crossref]

2013 (3)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. Christodoulides, and J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
[Crossref]

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Optics Express 21, 24413–24421 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (3)

2008 (2)

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref]

2000 (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

1997 (2)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

1988 (1)

1986 (1)

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and C. Steven, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Broky, J.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Cao, Z.

Cesar, C. L.

Chen, C.

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

Chen, H.

Chen, Z.

Cheng, H.

Cheng, K.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
[Crossref]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref]

Christodoulides, D.

Christodoulides, D. N.

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Dogariu, A.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Durnin, J.

Dziedzic, J. M.

Eberly, J. H.

Efremidis, N. K.

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Gao, S.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Gesualdi, M. R.

R. A. Suarez, A. A. Neves, and M. R. Gesualdi, “Generation and characterization of an array of Airy-vortex beams,” Opt. Commun. 458, 124846 (2019).
[Crossref]

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
[Crossref]

T. A. Vieira, M. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37, 2034–2036 (2012).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Hu, F.

Hu, Y.

Huang, K.

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Optics Express 21, 24413–24421 (2013).
[Crossref]

Huang, S.

Jáuregui, R.

Jiang, Y.

Jin, W.

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University, 2015).

Kavehrad, M.

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Lan, Y.

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Lencina, A.

Lin, Z.

Liu, J.

Liu, S.

Lou, C.

Lu, Q.

Lu, W.

Lu, X.

Y. Jiang, Z. Cao, H. Shao, W. Zheng, B. Zeng, and X. Lu, “Trapping two types of particles by modified circular Airy beams,” Opt. Express 24, 18072–18081 (2016).
[Crossref]

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Optics Express 21, 24413–24421 (2013).
[Crossref]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University, 2015).

Matos, O. M.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Miceli, J.

Mills, M.

Mills, M. S.

Neves, A. A.

R. A. Suarez, A. A. Neves, and M. R. Gesualdi, “Generation and characterization of an array of Airy-vortex beams,” Opt. Commun. 458, 124846 (2019).
[Crossref]

Neves, A. A. R.

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref]

Papazoglou, D. G.

Prakash, J.

Qian, Y.

Qiao, Y.

Quinto-Su, P.

Quinto-Su, P. A.

Ren, Z.

Rodrigo, J. A.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Shao, H.

Sheng, L.

Shi, Y.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Siviloglou, G.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Siviloglou, G. A.

Steven, C.

Suarez, R. A.

R. A. Suarez, A. A. Neves, and M. R. Gesualdi, “Generation and characterization of an array of Airy-vortex beams,” Opt. Commun. 458, 124846 (2019).
[Crossref]

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

Tian, J.

Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
[Crossref]

H. Cheng, W. Zang, W. Zhou, and J. Tian, “Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam,” Opt. Express 18, 20384–20394 (2010).
[Crossref]

Tian, J.-G.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Tzortzakis, S.

Vaveliuk, P.

Vieira, T. A.

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
[Crossref]

T. A. Vieira, M. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37, 2034–2036 (2012).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University, 2015).

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Wu, J.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref]

Xiang, A.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
[Crossref]

Xu, J.

Yang, H.

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

Yang, Y.

Yepes, I. S.

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Yu, W.

Zamboni-Rached, M.

T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
[Crossref]

T. A. Vieira, M. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37, 2034–2036 (2012).
[Crossref]

Zang, W.

Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
[Crossref]

H. Cheng, W. Zang, W. Zhou, and J. Tian, “Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam,” Opt. Express 18, 20384–20394 (2010).
[Crossref]

Zang, W.-P.

Zeng, B.

Zhang, P.

Zhang, Z.

Zhao, S.

Zhao, Z.

Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
[Crossref]

Zhao, Z.-Y.

Zheng, W.

Zhong, X.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
[Crossref]

Zhou, W.

Zhou, Z.

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

Zhu, X.

Appl. Opt. (1)

Biophys. J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[Crossref]

J. Opt. (1)

Z. Zhao, W. Zang, and J. Tian, “Optical trapping and manipulation of Mie particles with Airy beam,” J. Opt. 18, 025607 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Nat. Photon. (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[Crossref]

Opt. Commun. (4)

T. A. Vieira, M. Zamboni-Rached, and M. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: experimental generation of frozen waves via holographic method,” Opt. Commun. 315, 374–380 (2014).
[Crossref]

R. A. Suarez, A. A. Neves, and M. R. Gesualdi, “Generation and characterization of an array of Airy-vortex beams,” Opt. Commun. 458, 124846 (2019).
[Crossref]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[Crossref]

R. A. Suarez, T. A. Vieira, I. S. Yepes, and M. R. Gesualdi, “Photorefractive and computational holography in the experimental generation of Airy beam,” Opt. Commun. 366, 291–300 (2016).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

C. Chen, H. Yang, M. Kavehrad, and Z. Zhou, “Propagation of radial Airy array beams through atmospheric turbulence,” Opt. Lasers Eng. 52, 106–114 (2014).
[Crossref]

Opt. Lett. (11)

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and C. Steven, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

J. Durnin, J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13, 79–80 (1988).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, “Optimal control of the ballistic motion of Airy beams,” Opt. Lett. 35, 2260–2262 (2010).
[Crossref]

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. M. Matos, “Symmetric Airy beams,” Opt. Lett. 39, 2370–2373 (2014).
[Crossref]

Y. Lan, F. Hu, and Y. Qian, “Generation of spirally accelerating optical beams,” Opt. Lett. 44, 1968–1971 (2019).
[Crossref]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4047 (2010).
[Crossref]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
[Crossref]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[Crossref]

T. A. Vieira, M. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37, 2034–2036 (2012).
[Crossref]

Optics Express (1)

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Optics Express 21, 24413–24421 (2013).
[Crossref]

Optik (1)

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics and optical trapping of a radial Airy array beam,” Optik 125, 3966–3971 (2014).
[Crossref]

Phys. Rev. Lett. (2)

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997).
[Crossref]

Other (1)

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications (Cambridge University, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Scheme for the generation of an AiAB with four AiBs ($ N = 4 $). (b) Normalized transverse intensity pattern from the plane $ \xi = 0 $ onwards.
Fig. 2.
Fig. 2. (a) Relative error between exact and paraxial intensity distributions on the focal point as a function of the initial launch angle $ \nu $ for different $ N $ values. The black line shows the focal point as a function of $ \nu $. (b) Longitudinal intensity distribution.
Fig. 3.
Fig. 3. Direction and magnitude (arrows black) of transverse gradient force $ {({{\textbf F}_{{\rm gd}}})_ \bot } = ({{\textbf F}_{{\rm gd}}}{)_x} + {({{\textbf F}_{{\rm gd}}})_y} $ on planes $ z = 0 $ (top row) and $ z = {z_f} = 185\,\,\unicode{x00B5}{\rm m} $ (bottom row) for: $ N = 4 $ in (a) and (d), $ N = 8 $ in (b) and (e), and $ N = 128 $ in (c) and (f). The cross-section intensity of the AiABs is also shown in the background of each frame.
Fig. 4.
Fig. 4. Optical forces along the $ y = x $ direction for different values of $ N $. (a) Longitudinal scattering force. (b) Longitudinal gradient force. (c) Total radiation force $ {({{\textbf F}_{{\rm rad}}})_z} = ({{\textbf F}_{{\rm gd}}}{)_z} + {({{\textbf F}_{{\rm sc}}})_z} $. (d) Transverse radiation force $ {({{\textbf F}_{{\rm rad}}})_x} = ({{\textbf F}_{{\rm gd}}}{)_x} + {({{\textbf F}_{{\rm sc}}})_x} $ in $ {z_1} $.
Fig. 5.
Fig. 5. Longitudinal force distribution along $ y = x $ for three different initial angles. (a) Scattering force. (b) Gradient force. (c) Total radiation force. The points $ {z_{{\nu _1}}} $, $ {z_{{\nu _2}}} $, and $ {z_{{\nu _3}}} $ correspond to the first stable equilibrium position along the longitudinal force profile. (d) Transverse radiation force in the first stable equilibrium position.
Fig. 6.
Fig. 6. Trap stiffness $ {\kappa _x} $ e $ {\kappa _z} $ as a function of the number of beams $ N $ in (a) and (b), and as a function of the initial launch angle $ \nu $ in (c) and (d). In all cases, the stiffness is calculated at the focal point.

Tables (2)

Tables Icon

Table 1. Trap Stability for ν = 0 and Different Values of   N

Tables Icon

Table 2. Trap Stability for N = 128 and Different Values of ν

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

i ξ ψ ( s , ξ ) + 1 2 2 s 2 ψ ( s , ξ ) = 0 ,
ψ ( s , 0 ) = A i ( s ) exp ( a s ) exp ( i ν s ) ,
ψ ( s , ξ ) = A i ( s ξ 2 4 ν ξ + i a ξ ) exp [ a ( s ξ 2 2 ν ξ ) ] × exp [ i ( ξ 3 12 + ( a 2 ν 2 + s ) ξ 2 + ν s ν ξ 2 2 ) ] .
ψ ( s x , s y , ξ x , ξ y ) = ψ x ( s x , ξ x ) ψ y ( s y , ξ y ) ,
Ψ ( s x , s y , ξ x , ξ y ) = j = 1 N ψ jx ( s jx , ξ x ) ψ jy ( s jy , ξ y ) ,
s jx = ( x cos θ j y sin θ j + δ x ) w 0 , s jy = ( x sin θ j + y cos θ j + δ y ) w 0 .
A = A 0 Ψ e i ( k z ω t ) e x ,
B = × A i k A 0 ( Ψ e y i k Ψ y e z ) e i ( k z ω t ) , E = i c k × B i c k A 0 ( Ψ e x i k Ψ x e z ) e i ( k z ω t ) ,
B y , p a r = i k A 0 e i ω t e i F j = 1 N A i ( D jx ) A i ( D jy ) e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
B z , p a r = A 0 w 0 e i ω t e i F j = 1 N { A i ( D jx ) [ A i ( D jy ) s jy + α cos θ j A i ( D jy ) ] + A i ( D jy ) [ A i ( D jx ) s jy α sin θ j A i ( D jx ) ] } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
E x , p a r = i c k A 0 e i ω t e i F j = 1 N A i ( D jx ) A i ( D jy ) e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
E z , p a r = c A 0 w 0 e i ω t e i F j = 1 N { A i ( D jx ) [ A i ( D jy ) s jx + α sin θ j A i ( D jy ) ] + A i ( D jy ) [ A i ( D jx ) s jx + α cos θ j A i ( D jx ) ] } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
F = F g d + F s c = 1 4 R e ( α ) | E | 2 + C pr c S ,
C p r = C s c = 8 3 π k 4 R 6 ( m 2 1 m 2 + 2 ) 2 ,
( F g d ) i = ϵ 0 π n m 2 R 3 ( m 2 1 m 2 + 2 ) i [ | E x | 2 + | E y | 2 + | E z | 2 ] ,
( F s c ) i = ( n p c ) C pr S i
U = 1 2 κ r 2 + 1 2 κ z z 2 ,
R b = exp ( U / k B T ) 1 ,
Ψ ( s x , s y , ξ x , ξ y ) = j = 1 N A i ( D jx ) A i ( D jy ) e ( B jx + B jy ) e i ( C jx + C jy ) ,
B jm = a ( s jm ξ / 2 ν ξ ) ,
C jm = i [ ξ 3 / 12 + ( a 2 ν 2 + s jm ) ξ / 2 + ν s jm ν ξ 2 / 2 ] ,
D jm = s jm ξ 2 / 4 ν ξ + i a ξ .
B e x = × A , E e x = i c k × B
B y , e x = A 0 k w 0 2 e i ω t e i F j = 1 N { A i ( D jx ) A i ( D jy ) ( γ x + γ y i k 2 w 0 2 ) + A i ( D jy ) A i ( D jx ) ξ + A i ( D jx ) A i ( D jy ) ξ } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
B z , e x = A 0 w 0 e i ω t e i F j = 1 N { A i ( D jx ) [ A i ( D jy ) s jy + α cos θ j A i ( D jy ) ] + A i ( D jy ) [ A i ( D jx ) s jy α sin θ j A i ( D jx ) ] } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
E x , e x = i c A 0 k w 0 2 e i ω t e i F j = 1 N { A i ( D jx ) A i ( D jy ) [ 2 α k w 0 2 β 2 ( 1 + D jy ) ( γ x + γ y i k 2 w 0 2 ) k ( D jy cos 2 θ j D jx sin 2 θ j ) k α 2 ( cos θ j sin θ j ) 2 ] + [ A i ( D jy ) A i ( D jx ) ξ + A i ( D jx ) A i ( D jy ) ξ ] [ 1 2 k w 0 2 2 ( γ x + γ y i k 2 w 0 2 ) ] 2 k α w 0 2 [ A i ( D jy ) A i ( D jx ) s jy + A i ( D jx ) A i ( D jy ) s jy ] ( cos θ j sin θ j ) 2 k w 0 2 A i ( D jx ) s jy A i ( D jy ) s jy 2 A i ( D jx ) ξ A i ( D jy ) ξ } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
E y , e x = i c A 0 k w 0 2 e i ω t e i F j = 1 N { A i ( D jx ) A i ( D jy ) cos θ j sin θ j ( D jx + D jy ) + α w 0 A i ( D jx ) [ A i ( D jy ) s jx + A i ( D jy ) s jy ] ( cos θ j sin θ j ) + α w 0 A i ( D jy ) [ A i ( D jx ) s jx + A i ( D jx ) s jy ] ( cos θ j sin θ j ) + w 0 2 A i ( D jx ) s jx A i ( D jy ) s jy + w 0 2 A i ( D jy ) s jx A i ( D jx ) s jy } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
E z , e x = i c A 0 k w 0 2 e i ω t e i F j = 1 N { A i ( D jx ) A i ( D jy ) [ ( cos θ j + sin θ j ) ( i 2 w 0 + α w 0 ) + β ( D jx + D jy ) ] + ( γ x + γ y i k 2 w 0 2 ) [ A i ( D jy ) A i ( D jx ) s jx + A i ( D jx ) A i ( D jy ) s jx ] + α w 0 [ A i ( D jy ) A i ( D jx ) ξ + A i ( D jx ) A i ( D jy ) ξ ] ( cos θ j + sin θ j ) + A i ( D jx ) s jx A i ( D jy ) ξ + A i ( D jy ) s jx A i ( D jx ) ξ } e ( B jx + i C jx ) e i ( B jy + i C jy ) ,
α = a + i ( ν + ξ / 2 ) ,
β = i a ν ξ / 2 ,
γ jm = a ξ a ν i [ ξ 2 / 4 1 / 2 ( a 2 ν 2 + s jm ) + ν ξ ] ,
F = k 2 w 0 2 ξ .

Metrics