H. Liu, Q. Wang, and W. Cai, “Assessment of plenoptic imaging for reconstruction of 3D discrete and continuous luminous fields,” J. Opt. Soc. Am. A 36, 149–158 (2019).

[Crossref]

Y. Gao, X. Yang, C. Fu, Y. Yang, Z. Li, H. Zhang, and F. Qi, “10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing,” Appl. Opt. 58, C112–C120 (2019).

[Crossref]

N. A. Worth and J. R. Dawson, “Characterisation of flame surface annihilation events in self excited interacting flames,” Combust. Flame 199, 338–351 (2019).

[Crossref]

A. Unterberger, A. Kempf, and K. Mohri, “3D evolutionary reconstruction of scalar fields in the gas-phase,” Energies 12, 2075 (2019).

[Crossref]

J. Huang, H. Liu, and W. Cai, “Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning,” J. Fluid Mech. 875, R2 (2019).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

J. Zhao, H. Liu, and W. Cai, “Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography,” Appl. Opt. 58, 1363–1373 (2019).

[Crossref]

Q. Qu, Z. Cao, L. Xu, C. Liu, L. Chang, and H. McCann, “Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography,” Appl. Opt. 58, 205–212 (2019).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

H. C. Liu, B. Sun, and W. W. Cai, “kHz-rate volumetric flame imaging using a single camera,” Opt. Commun. 437, 33–43 (2019).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

T. Yu and W. Cai, “Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy,” Appl. Opt. 56, 2183–2194 (2017).

[Crossref]

K. Wang, F. Li, H. Zeng, and X. Yu, “Three-dimensional flame measurements with large field angle,” Opt. Express 25, 21008–21018 (2017).

[Crossref]

K. Mohri, S. Görs, J. Schöler, A. Rittler, T. Dreier, C. Schulz, and A. Kempf, “Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence,” Appl. Opt. 56, 7385–7395 (2017).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

W. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transfer 172, 58–74 (2016).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35, 3821–3828 (2015).

[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161, 3063–3072 (2014).

[Crossref]

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24, 24013–24023 (2013).

[Crossref]

G. Qi, H. P. Wang, and J. J. Wang, “A single camera volumetric particle image velocimetry and its application,” Sci. China Technol. Sci. 55, 2501–2510 (2012).

[Crossref]

N. B. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of 2D-OH *-chemiluminescence distributions in turbulent diffusion flames,” Appl. Phys. B 107, 591–602 (2012).

[Crossref]

M. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[Crossref]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

P. C. Hanson, “Rank-deficient and discrete ill-posed problems,” Am. Math. Monthly 4, 491 (1998).

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theoret. Biol. 29, 471–481 (1970).

[Crossref]

N. B. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of 2D-OH *-chemiluminescence distributions in turbulent diffusion flames,” Appl. Phys. B 107, 591–602 (2012).

[Crossref]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theoret. Biol. 29, 471–481 (1970).

[Crossref]

N. B. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of 2D-OH *-chemiluminescence distributions in turbulent diffusion flames,” Appl. Phys. B 107, 591–602 (2012).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

H. Liu, Q. Wang, and W. Cai, “Assessment of plenoptic imaging for reconstruction of 3D discrete and continuous luminous fields,” J. Opt. Soc. Am. A 36, 149–158 (2019).

[Crossref]

J. Huang, H. Liu, and W. Cai, “Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning,” J. Fluid Mech. 875, R2 (2019).

[Crossref]

J. Zhao, H. Liu, and W. Cai, “Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography,” Appl. Opt. 58, 1363–1373 (2019).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

T. Yu and W. Cai, “Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy,” Appl. Opt. 56, 2183–2194 (2017).

[Crossref]

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

H. C. Liu, B. Sun, and W. W. Cai, “kHz-rate volumetric flame imaging using a single camera,” Opt. Commun. 437, 33–43 (2019).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

W. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

Q. Qu, Z. Cao, L. Xu, C. Liu, L. Chang, and H. McCann, “Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography,” Appl. Opt. 58, 205–212 (2019).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transfer 172, 58–74 (2016).

[Crossref]

N. A. Worth and J. R. Dawson, “Characterisation of flame surface annihilation events in self excited interacting flames,” Combust. Flame 199, 338–351 (2019).

[Crossref]

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24, 24013–24023 (2013).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[Crossref]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theoret. Biol. 29, 471–481 (1970).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transfer 172, 58–74 (2016).

[Crossref]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transfer 172, 58–74 (2016).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

P. C. Hanson, “Rank-deficient and discrete ill-posed problems,” Am. Math. Monthly 4, 491 (1998).

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theoret. Biol. 29, 471–481 (1970).

[Crossref]

M. M. Hossain, G. Lu, and Y. Yan, “Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging,” in IEEE International Instrumentation and Measurement Technology Conference (2011), pp. 1–5.

M. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

J. Huang, H. Liu, and W. Cai, “Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning,” J. Fluid Mech. 875, R2 (2019).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

W. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).

[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35, 3821–3828 (2015).

[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161, 3063–3072 (2014).

[Crossref]

A. Unterberger, A. Kempf, and K. Mohri, “3D evolutionary reconstruction of scalar fields in the gas-phase,” Energies 12, 2075 (2019).

[Crossref]

K. Mohri, S. Görs, J. Schöler, A. Rittler, T. Dreier, C. Schulz, and A. Kempf, “Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence,” Appl. Opt. 56, 7385–7395 (2017).

[Crossref]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35, 3821–3828 (2015).

[Crossref]

Y. Gao, X. Yang, C. Fu, Y. Yang, Z. Li, H. Zhang, and F. Qi, “10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing,” Appl. Opt. 58, C112–C120 (2019).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

Q. Qu, Z. Cao, L. Xu, C. Liu, L. Chang, and H. McCann, “Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography,” Appl. Opt. 58, 205–212 (2019).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

J. Zhao, H. Liu, and W. Cai, “Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography,” Appl. Opt. 58, 1363–1373 (2019).

[Crossref]

H. Liu, Q. Wang, and W. Cai, “Assessment of plenoptic imaging for reconstruction of 3D discrete and continuous luminous fields,” J. Opt. Soc. Am. A 36, 149–158 (2019).

[Crossref]

J. Huang, H. Liu, and W. Cai, “Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning,” J. Fluid Mech. 875, R2 (2019).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

H. C. Liu, B. Sun, and W. W. Cai, “kHz-rate volumetric flame imaging using a single camera,” Opt. Commun. 437, 33–43 (2019).

[Crossref]

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

M. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[Crossref]

M. M. Hossain, G. Lu, and Y. Yan, “Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging,” in IEEE International Instrumentation and Measurement Technology Conference (2011), pp. 1–5.

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35, 3821–3828 (2015).

[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161, 3063–3072 (2014).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

A. Unterberger, A. Kempf, and K. Mohri, “3D evolutionary reconstruction of scalar fields in the gas-phase,” Energies 12, 2075 (2019).

[Crossref]

K. Mohri, S. Görs, J. Schöler, A. Rittler, T. Dreier, C. Schulz, and A. Kempf, “Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence,” Appl. Opt. 56, 7385–7395 (2017).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

G. Qi, H. P. Wang, and J. J. Wang, “A single camera volumetric particle image velocimetry and its application,” Sci. China Technol. Sci. 55, 2501–2510 (2012).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

H. C. Liu, B. Sun, and W. W. Cai, “kHz-rate volumetric flame imaging using a single camera,” Opt. Commun. 437, 33–43 (2019).

[Crossref]

N. B. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of 2D-OH *-chemiluminescence distributions in turbulent diffusion flames,” Appl. Phys. B 107, 591–602 (2012).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

A. Unterberger, A. Kempf, and K. Mohri, “3D evolutionary reconstruction of scalar fields in the gas-phase,” Energies 12, 2075 (2019).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

G. Qi, H. P. Wang, and J. J. Wang, “A single camera volumetric particle image velocimetry and its application,” Sci. China Technol. Sci. 55, 2501–2510 (2012).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

G. Qi, H. P. Wang, and J. J. Wang, “A single camera volumetric particle image velocimetry and its application,” Sci. China Technol. Sci. 55, 2501–2510 (2012).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

N. A. Worth and J. R. Dawson, “Characterisation of flame surface annihilation events in self excited interacting flames,” Combust. Flame 199, 338–351 (2019).

[Crossref]

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24, 24013–24023 (2013).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161, 3063–3072 (2014).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

Q. Qu, Z. Cao, L. Xu, C. Liu, L. Chang, and H. McCann, “Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography,” Appl. Opt. 58, 205–212 (2019).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

M. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[Crossref]

M. M. Hossain, G. Lu, and Y. Yan, “Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging,” in IEEE International Instrumentation and Measurement Technology Conference (2011), pp. 1–5.

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

T. Yu and W. Cai, “Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy,” Appl. Opt. 56, 2183–2194 (2017).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in IEEE International Conference on Computer Vision (1999), vol. 661, pp. 666–673.

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

H. C. Liu, J. N. Zhao, C. Y. Shui, and W. W. Cai, “Reconstruction and analysis of non-premixed turbulent swirl flames based on kHz-rate multi-angular endoscopic volumetric tomography,” Aerosp. Sci. Technol. 91, 422–433 (2019).

[Crossref]

P. C. Hanson, “Rank-deficient and discrete ill-posed problems,” Am. Math. Monthly 4, 491 (1998).

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation,” Appl. Opt. 55, 5917–5923 (2016).

[Crossref]

T. Yu and W. Cai, “Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy,” Appl. Opt. 56, 2183–2194 (2017).

[Crossref]

H. Liu, T. Yu, M. Zhang, and W. Cai, “Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view,” Appl. Opt. 56, 7107–7115 (2017).

[Crossref]

K. Mohri, S. Görs, J. Schöler, A. Rittler, T. Dreier, C. Schulz, and A. Kempf, “Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence,” Appl. Opt. 56, 7385–7395 (2017).

[Crossref]

Q. Qu, Z. Cao, L. Xu, C. Liu, L. Chang, and H. McCann, “Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography,” Appl. Opt. 58, 205–212 (2019).

[Crossref]

J. Zhao, H. Liu, and W. Cai, “Numerical and experimental validation of a single-camera 3D velocimetry based on endoscopic tomography,” Appl. Opt. 58, 1363–1373 (2019).

[Crossref]

Y. Gao, X. Yang, C. Fu, Y. Yang, Z. Li, H. Zhang, and F. Qi, “10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing,” Appl. Opt. 58, C112–C120 (2019).

[Crossref]

N. B. Anikin, R. Suntz, and H. Bockhorn, “Tomographic reconstruction of 2D-OH *-chemiluminescence distributions in turbulent diffusion flames,” Appl. Phys. B 107, 591–602 (2012).

[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158, 376–391 (2011).

[Crossref]

N. A. Worth and J. R. Dawson, “Characterisation of flame surface annihilation events in self excited interacting flames,” Combust. Flame 199, 338–351 (2019).

[Crossref]

M. Zhang, J. H. Wang, W. Jin, Z. H. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162, 2087–2097 (2015).

[Crossref]

S. M. Wiseman, M. J. Brear, R. L. Gordon, and I. Marusic, “Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames,” Combust. Flame 183, 1–14 (2017).

[Crossref]

L. Ma, Y. Wu, Q. Lei, W. Xu, and C. D. Carter, “3D flame topography and curvature measurements at 5 kHz on a premixed turbulent Bunsen flame,” Combust. Flame 166, 66–75 (2016).

[Crossref]

M. Lin, Q. Lei, W. Yue, W. Xu, T. M. Ombrello, and C. D. Carter, “From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz,” Combust. Flame 165, 1–10 (2016).

[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161, 3063–3072 (2014).

[Crossref]

A. Unterberger, A. Kempf, and K. Mohri, “3D evolutionary reconstruction of scalar fields in the gas-phase,” Energies 12, 2075 (2019).

[Crossref]

C. Ruan, T. Yu, F. E. Chen, S. X. Wang, W. W. Cai, and X. C. Lu, “Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence,” Energy 170, 744–751 (2019).

[Crossref]

H. M. Lang, K. Oberleithner, C. O. Paschereit, and M. Sieber, “Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography,” Exp. Fluids 58, 88–108 (2017).

[Crossref]

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41, 933–947 (2006).

[Crossref]

D. Mei, J. F. Ding, S. X. Shi, T. H. New, and J. Soria, “High resolution volumetric dual-camera light-field PIV,” Exp. Fluids 60, 132–152 (2019).

[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[Crossref]

M. M. M. Hossain, G. Lu, and Y. Yan, “Optical fiber imaging based tomographic reconstruction of burner flames,” IEEE Trans. Instrum. Meas. 61, 1417–1425 (2012).

[Crossref]

J. Huang, H. Liu, and W. Cai, “Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning,” J. Fluid Mech. 875, R2 (2019).

[Crossref]

K. J. Daun, S. J. Grauer, and P. J. Hadwin, “Chemical species tomography of turbulent flows: discrete ill-posed and rank deficient problems and the use of prior information,” J. Quant. Spectrosc. Radiat. Transfer 172, 58–74 (2016).

[Crossref]

R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theoret. Biol. 29, 471–481 (1970).

[Crossref]

T. Li, J. Pareja, F. Fuest, M. Schütte, Y. Zhou, A. Dreizler, and B. Böhm, “Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames,” Meas. Sci. Technol. 29, 015206 (2018).

[Crossref]

Y. Tao, L. Ziming, R. Can, C. Feier, L. Xingcai, and C. Weiwei, “Development of an absorption-corrected method for three-dimensional computed tomography of chemiluminescence,” Meas. Sci. Technol. 30, 045403 (2019).

[Crossref]

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24, 24013–24023 (2013).

[Crossref]

C. Liu, Z. Cao, F. Y. Li, Y. Z. Lin, and L. J. Xu, “Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography,” Meas. Sci. Technol. 28, 054002 (2017).

[Crossref]

H. C. Liu, B. Sun, and W. W. Cai, “kHz-rate volumetric flame imaging using a single camera,” Opt. Commun. 437, 33–43 (2019).

[Crossref]

B. R. Halls, D. J. Thul, D. Michaelis, S. Roy, T. R. Meyer, and J. R. Gord, “Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet,” Opt. Express 24, 10040–10049 (2016).

[Crossref]

Y. Jin, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography,” Opt. Express 25, 4640–4654 (2017).

[Crossref]

Y. Jin, W. Zhang, Y. Song, X. Qu, Z. Li, Y. Ji, and A. He, “Three-dimensional rapid flame chemiluminescence tomography via deep learning,” Opt. Express 27, 27308–27334 (2019).

[Crossref]

K. Wang, F. Li, H. Zeng, and X. Yu, “Three-dimensional flame measurements with large field angle,” Opt. Express 25, 21008–21018 (2017).

[Crossref]

B. R. Halls, P. S. Hsu, N. B. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4, 897–902 (2017).

[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35, 3821–3828 (2015).

[Crossref]

J. Floyd and A. M. Kempf, “Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner,” Proc. Combust. Inst. 33, 751–758 (2011).

[Crossref]

W. W. Cai and C. F. Kaminski, “Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows,” Prog. Energy Combust. Sci. 59, 1–31 (2017).

[Crossref]

L. Xu, C. Liu, W. Jing, Z. Cao, X. Xue, and Y. Lin, “Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction,” Rev. Sci. Instrum. 87, 013101 (2016).

[Crossref]

G. Qi, H. P. Wang, and J. J. Wang, “A single camera volumetric particle image velocimetry and its application,” Sci. China Technol. Sci. 55, 2501–2510 (2012).

[Crossref]

M. M. Hossain, G. Lu, and Y. Yan, “Three-dimensional reconstruction of combustion flames through optical fiber sensing and CCD imaging,” in IEEE International Instrumentation and Measurement Technology Conference (2011), pp. 1–5.

Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orientations,” in IEEE International Conference on Computer Vision (1999), vol. 661, pp. 666–673.