Abstract

We report the experimental observation of giant dispersive and absorptive optical nonlinearities in direct current magnetron sputtered as-grown and annealed $ {{\rm TiO}_2} $ thin films. The $ {{\rm TiO}_2} $ film was deposited in a mixture of argon and oxygen. The as-grown film and the film annealed below 250°C demonstrated amorphous behavior having particle size variation in the range of 15–20 nm, while the films annealed above temperature $ \ge 300^\circ{\rm C} $ exhibited crystalline structure with larger particle size (50–80 nm). The enhancement in optical nonlinearity in amorphous films can be attributed to small particle sizes, while in crystalline thin films, the enhancement in optical nonlinearity is attributed to phonon-assisted resonant transitions. The films are characterized by the x-ray diffraction technique, atomic force microscopy, UV–visible spectroscopy, and Raman spectroscopy for their structural properties, morphology, bandgap, and presence of phonon modes, respectively. The intensity-dependent nonlinear optical properties of the films are analyzed by using the Z-scan technique.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Preparation and third-order optical nonlinearity of gold nanoparticles incorporated mesoporous TiO2 thin films

Fangming Cui, Zile Hua, Qianjun He, Jiangtian Li, Limin Guo, Xiangzhi Cui, Peng Jiang, Chenyang Wei, Weimin Huang, Wenbo Bu, and Jianlin Shi
J. Opt. Soc. Am. B 26(1) 107-112 (2009)

Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles

D. Torres-Torres, M. Trejo-Valdez, L. Castañeda, C. Torres-Torres, L. Tamayo-Rivera, R. C. Fernández-Hernández, J. A. Reyes-Esqueda, J. Muñoz-Saldaña, R. Rangel-Rojo, and A. Oliver
Opt. Express 18(16) 16406-16417 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
    [Crossref]
  2. T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
    [Crossref]
  3. K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
    [Crossref]
  4. V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
    [Crossref]
  5. P. P. Dey and A. Khare, “Nonlinear optical and optical limiting response of PLD nc-Si thin films,” J. Mater. Chem. C 5, 12211–12220 (2017).
    [Crossref]
  6. J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
    [Crossref]
  7. R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
    [Crossref]
  8. R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
    [Crossref]
  9. A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
    [Crossref]
  10. M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  11. T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
    [Crossref]
  12. D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855–874 (2011).
    [Crossref]
  13. W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
    [Crossref]
  14. H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
    [Crossref]
  15. S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
    [Crossref]
  16. B. Gu, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 22, 2651–2659 (2005).
    [Crossref]
  17. R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
    [Crossref]
  18. X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
    [Crossref]
  19. K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
    [Crossref]
  20. R. W. Boyd, “The intensity dependent refractive index,” in Nonlinear Optics (Academic, 2003), p. 275.
  21. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
    [Crossref]
  22. G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
    [Crossref]

2018 (1)

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

2017 (2)

P. P. Dey and A. Khare, “Nonlinear optical and optical limiting response of PLD nc-Si thin films,” J. Mater. Chem. C 5, 12211–12220 (2017).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

2016 (1)

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

2015 (1)

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

2014 (1)

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

2013 (1)

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

2011 (1)

D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855–874 (2011).
[Crossref]

2010 (2)

S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
[Crossref]

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

2009 (2)

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

2006 (1)

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[Crossref]

2005 (3)

B. Gu, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 22, 2651–2659 (2005).
[Crossref]

H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
[Crossref]

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

1998 (1)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

1994 (2)

T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

1993 (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

1990 (1)

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Agrawal, A.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Alkaim, A.

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

Andrews, J. T.

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Bahnemann, D.

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

Baraskar, P.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

Boyd, R. W.

R. W. Boyd, “The intensity dependent refractive index,” in Nonlinear Optics (Academic, 2003), p. 275.

Brodyn, M. S.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Chen, A.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Chen, W. T.

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Chikama, K.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Choi, H. C.

H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
[Crossref]

Chouhan, R.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

Couris, S.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Dar, T. A.

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Dey, P. P.

P. P. Dey and A. Khare, “Nonlinear optical and optical limiting response of PLD nc-Si thin films,” J. Mater. Chem. C 5, 12211–12220 (2017).
[Crossref]

Dittrich, Th.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Galas, A.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Ganeev, R. A.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[Crossref]

Gayvoronsky, V.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Gu, B.

Gupta, M.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

Hagan, D. J.

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Hanaor, D. A. H.

D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855–874 (2011).
[Crossref]

Hashimoto, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Iliopoulos, K.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Jung, Y. M.

H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
[Crossref]

Kalogerakis, G.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Kandiel, T.

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

Katsarakis, N.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Khare, A.

P. P. Dey and A. Khare, “Nonlinear optical and optical limiting response of PLD nc-Si thin films,” J. Mater. Chem. C 5, 12211–12220 (2017).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Kim, S. B.

H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
[Crossref]

Koch, F.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Kojima, K.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Koudoumas, E.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Li, Y.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Liao, H. B.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Liu, X.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Long, H.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Lu, P.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Marin, J. M.

S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
[Crossref]

Matsumura, K.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Ming-Sheng, Z.

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

Nagaraja, H. S.

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Nagaraja, K. K.

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Nepijko, S. A.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Poornesh, P.

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Pramodini, S.

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Qiang, C.

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

Restrepo, G.

S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
[Crossref]

Robben, L.

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[Crossref]

Said, A. A.

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sakka, S.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Santhosh Kumar, A.

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Sen, P.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Sen, P. K.

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Sheikh-Bahae, M.

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Shepelyavyy, E.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Sorrell, C. C.

D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855–874 (2011).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Sun, G.

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Timoshenko, V. Yu.

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

Tomita, Y.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Tsai, D. P.

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Tsai, W. Y.

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Valencia, S.

S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
[Crossref]

Van Stryland, E. W.

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Vernardou, D.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

Wang, H.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Wei, T. H.

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wong, G. K. L.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Wong, K. S.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Xiao, R. F.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Xiaoli, J. I.

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

Xijun, W.

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

Yang, G.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Yasui, K.

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

Yoko, T.

T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Zhen, Y.

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

Appl. Phys. B (2)

V. Gayvoronsky, A. Galas, E. Shepelyavyy, Th. Dittrich, V. Yu. Timoshenko, S. A. Nepijko, M. S. Brodyn, and F. Koch, “Giant nonlinear optical response of nanoporous anatase layers,” Appl. Phys. B 80, 97–100 (2005).
[Crossref]

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[Crossref]

Appl. Phys. Lett. (1)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817–1819 (1998).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

T. Hashimoto, T. Yoko, and S. Sakka, “Sol–gel preparation and third-order nonlinear optical properties of TiO2,” Bull. Chem. Soc. Jpn. 67, 653–660 (1994).
[Crossref]

Chin. Phys. Lett. (1)

W. Xijun, Z. Ming-Sheng, Y. Zhen, J. I. Xiaoli, and C. Qiang, “Temperature characteristics of Raman spectra in nanometer material titanium dioxide,” Chin. Phys. Lett. 11, 685–688 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheikh-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. App. Phys. (1)

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, P. K. Sen, and P. Sen, “Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films,” J. App. Phys. 122, 025301 (2017).
[Crossref]

J. Appl. Phys. (1)

X. Liu, K. Matsumura, Y. Tomita, K. Yasui, K. Kojima, and K. Chikama, “Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex,” J. Appl. Phys. 108, 073102 (2010).
[Crossref]

J. Mater. Chem. C (1)

P. P. Dey and A. Khare, “Nonlinear optical and optical limiting response of PLD nc-Si thin films,” J. Mater. Chem. C 5, 12211–12220 (2017).
[Crossref]

J. Mater. Sci. (1)

D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” J. Mater. Sci. 46, 855–874 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

A. Agrawal, T. A. Dar, J. T. Andrews, P. K. Sen, and P. Sen, “Negative thermo-optic coefficients and optical limiting response in pulsed laser deposited Mg-doped ZnO thin films,” J. Opt. Soc. Am. B. 33, 2015–2019 (2016).
[Crossref]

Laser Phys. (1)

K. K. Nagaraja, S. Pramodini, A. Santhosh Kumar, H. S. Nagaraja, and P. Poornesh, “Structural, linear, and nonlinear optical properties of radio frequency-sputtered nitrogen-doped ZnO thin films studied using z-scan technique,” Laser Phys. 24, 085402 (2014).
[Crossref]

Open Mater. Sci. J. (1)

S. Valencia, J. M. Marin, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Mater. Sci. J. 4, 9–14 (2010).
[Crossref]

Opt. Mater. (1)

R. Chouhan, P. Baraskar, A. Agrawal, M. Gupta, and P. Sen, “Magnetically tuned absorptive optical nonlinearity in NiO thin films,” Opt. Mater. 84, 893–898 (2018).
[Crossref]

Photochem. Photobiol. Sci. (1)

T. Kandiel, L. Robben, A. Alkaim, and D. Bahnemann, “Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities,” Photochem. Photobiol. Sci. 12, 602–609 (2013).
[Crossref]

Proc. SPIE (1)

G. I. Stegeman, “Material figures of merit and implications to all-optical waveguide switching,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Sci. Rep. (1)

J. B. Khurgin, G. Sun, W. T. Chen, W. Y. Tsai, and D. P. Tsai, “Ultrafast thermal nonlinearity,” Sci. Rep. 5, 17899 (2015).
[Crossref]

Thin Solid Films (2)

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518, 1174–1176 (2009).
[Crossref]

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517, 5601–5604 (2009).
[Crossref]

Vib. Spectrosc. (1)

H. C. Choi, Y. M. Jung, and S. B. Kim, “Size effects in the Raman spectra of TiO2 nanoparticles,” Vib. Spectrosc. 37, 33–38 (2005).
[Crossref]

Other (1)

R. W. Boyd, “The intensity dependent refractive index,” in Nonlinear Optics (Academic, 2003), p. 275.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. XRD Spectra of the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 2.
Fig. 2. AFM images of the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 3.
Fig. 3. Raman spectra of the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 4.
Fig. 4. Transmittance spectra of the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 5.
Fig. 5. Tauc plot for the indirect bandgap of the $ {{\rm TiO}_2} $ films. Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 6.
Fig. 6. Normalized transmittance as a function of distance (z) in case of close aperture Z-scan for the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here symbols (half-filled circle) indicate the experimental data points and dashed (solid) line exhibits the theoretical fit by considering ${m} = {1}$ (${m} = {1}$ and 2) in Eq. (2). Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.
Fig. 7.
Fig. 7. Normalized transmittance as a function of distance (z) in case of open aperture Z-scan for the as-deposited and annealed $ {{\rm TiO}_2} $ films. Here symbols indicate the experimental data points. Solid line exhibits the theoretical fit by using Eq. (8). Here S1 represents as-deposited film, whereas S2, S3, S4, and S5 represent annealed films at 250°C, 300°C, 400°C, and 500°C, respectively.

Tables (2)

Tables Icon

Table 1. Experimentally Obtained Values of Indirect ( E g ) Bandgap, Nonlinear Absorption Coefficient ( β ), Nonlinear Refraction Coefficient for Simultaneously Fitted Third-Order ( n 2 ) and Fifth-Order ( n 4 ) Optical Nonlinearities, Effective Nonlinear Refractive Index ( n n l , e f f ), Real ( χ R ( 3 ) ) and Imaginary ( χ I ( 3 ) ) Parts of Nonlinear Optical Susceptibility, and Figures of Merit ( W and T 1 )

Tables Icon

Table 2. Literature Comparison of a Third-Order Nonlinear Susceptibility with Different Laser Excitations

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α o h ν = A ( h ν E g ) r .
T [ x , Δ ϕ 0 ( 2 m + 1 ) ] = m = 1 1 + 4 m x Δ ϕ 0 ( 2 m + 1 ) [ x 2 + 1 ] m [ x 2 + ( 2 m + 1 ) 2 ] .
Δ ϕ 0 ( 2 m + 1 ) = n 2 m I 0 m k L e f f ( 2 m + 1 ) .
L e f f ( 2 m + 1 ) = [ 1 exp ( m α o L ) ] m α o .
n n l , e f f = n 2 + n 4 I 0 .
χ R ( 3 ) = 1.4 c n o 2 n 2 480 π 2 × 10 14 .
T = α o I o R 2 κ .
T ( x ) = m = 0 [ q o ( x ) ] m ( m + 1 ) 3 / 2 , q o < 1.
q o ( x ) = β I 0 L e f f 1 + Z 2 Z R 2 ,
χ I ( 3 ) = 1.4 c n o 2 β 96 π 2 ω × 10 15 .

Metrics