Abstract

Surface modification of ZnO nanoparticles with ethanedithiol (EDT) has been studied to minimize exciton loss at the ZnO/quantum dots (QDs) interface and to improve the efficiency of QD light-emitting diodes (QLEDs). The EDT treatment has been demonstrated to fill oxygen vacancies and reduce carboxylate and hydroxyl ligands on the surface of the ZnO nanoparticles from the x-ray photoelectron spectroscopy analysis. The reduction of oxygen vacancies makes the ZnO films more hydrophobic and maintains the optical bandgap under ambient conditions. EDT treatment shifts the energy level up by 0.47 eV by modifying the surface of ZnO. Non-radiative recombination processes at the ZnO/QDs interface such as interfacial charge transfer and energy transfer are reduced through the upshifted energy level and reduced surface defects. The brightness of the QLED with EDT treatment on ZnO was improved by more than 330% having a maximum luminance of ${59},{500}\;{{\rm cd/m}^2}$ compared to the QLED with pristine ZnO. The maximum current efficiency of the QLEDs has been improved from 54.3 cd/A to 73.4 cd/A, which is 35% higher than ZnO-based QLEDs.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ZnMgO:ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes

Qin Zhang, Xiaobing Gu, Qingsong Zhang, Jie Jiang, Xiao Jin, Feng Li, Zhongping Chen, Feng Zhao, and Qinghua Li
Opt. Mater. Express 8(4) 909-918 (2018)

High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

Interlayer doping with p-type dopant for charge balance in indium phosphide (InP)-based quantum dot light-emitting diodes

Hyejin Kim, Woosuk Lee, Hyungsuk Moon, Sun Jung Kim, Ho Kyoon Chung, and Heeyeop Chae
Opt. Express 27(16) A1287-A1296 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
    [Crossref]
  2. W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
    [Crossref]
  3. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
    [Crossref]
  4. Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
    [Crossref]
  5. S. Y. Lin, G. J. Tan, J. H. Yu, E. G. Chen, Y. L. Weng, X. T. Zhou, S. Xu, Y. Ye, Q. F. Yan, and T. L. Guo, “Multi-primary-color quantum-dot down-converting films for display applications,” Opt. Express 27, 28480–28493 (2019).
    [Crossref]
  6. Y. B. Zhang, F. J. Zhang, H. Z. Wang, L. Wang, F. F. Wang, Q. L. Lin, H. B. Shen, and L. S. Li, “High-efficiency CdSe/CdS nanorod-based red light-emitting diodes,” Opt. Express 27, 7935–7944 (2019).
    [Crossref]
  7. Q. Zhang, C. Chang, W. F. Zhao, Q. C. Li, F. Li, X. Jin, F. Zhao, Z. P. Chen, and Q. H. Li, “Bright and efficient quantum dot light-emitting diodes with double light-emitting layers,” Opt. Lett. 43, 5925–5928 (2018).
    [Crossref]
  8. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
    [Crossref]
  9. L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
    [Crossref]
  10. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
    [Crossref]
  11. S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
    [Crossref]
  12. J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
    [Crossref]
  13. K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
    [Crossref]
  14. N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
    [Crossref]
  15. Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
    [Crossref]
  16. Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
    [Crossref]
  17. H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
    [Crossref]
  18. S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
    [Crossref]
  19. X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
    [Crossref]
  20. H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
    [Crossref]
  21. W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
    [Crossref]
  22. H. Zhang and S. M. Chen, “An ZnMgO: PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes,” J. Mater. Chem. C 7, 2291–2298 (2019).
    [Crossref]
  23. J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
    [Crossref]
  24. F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
    [Crossref]
  25. S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
    [Crossref]
  26. H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
    [Crossref]
  27. J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
    [Crossref]
  28. F. Abrinaei and N. Molahasani, “Effects of Mn doping on the structural, linear, and nonlinear optical properties of ZnO nanoparticles,” J. Opt. Soc. Am. B 35, 2015–2022 (2018).
    [Crossref]
  29. J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
    [Crossref]
  30. F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
    [Crossref]
  31. N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
    [Crossref]
  32. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).
  33. H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
    [Crossref]
  34. A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
    [Crossref]
  35. S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
    [Crossref]
  36. B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
    [Crossref]
  37. S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
    [Crossref]
  38. P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
    [Crossref]
  39. C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
    [Crossref]
  40. K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
    [Crossref]

2019 (5)

S. Y. Lin, G. J. Tan, J. H. Yu, E. G. Chen, Y. L. Weng, X. T. Zhou, S. Xu, Y. Ye, Q. F. Yan, and T. L. Guo, “Multi-primary-color quantum-dot down-converting films for display applications,” Opt. Express 27, 28480–28493 (2019).
[Crossref]

Y. B. Zhang, F. J. Zhang, H. Z. Wang, L. Wang, F. F. Wang, Q. L. Lin, H. B. Shen, and L. S. Li, “High-efficiency CdSe/CdS nanorod-based red light-emitting diodes,” Opt. Express 27, 7935–7944 (2019).
[Crossref]

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

H. Zhang and S. M. Chen, “An ZnMgO: PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes,” J. Mater. Chem. C 7, 2291–2298 (2019).
[Crossref]

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

2018 (7)

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

F. Abrinaei and N. Molahasani, “Effects of Mn doping on the structural, linear, and nonlinear optical properties of ZnO nanoparticles,” J. Opt. Soc. Am. B 35, 2015–2022 (2018).
[Crossref]

Q. Zhang, C. Chang, W. F. Zhao, Q. C. Li, F. Li, X. Jin, F. Zhao, Z. P. Chen, and Q. H. Li, “Bright and efficient quantum dot light-emitting diodes with double light-emitting layers,” Opt. Lett. 43, 5925–5928 (2018).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

2017 (6)

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

2016 (3)

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

2015 (4)

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

2014 (4)

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

2013 (2)

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

2012 (1)

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

2011 (2)

K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
[Crossref]

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

2010 (1)

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

2009 (2)

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

1994 (1)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

1993 (1)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Abdellah, M.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Abrinaei, F.

Ahn, T. K.

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

Alivisatos, A. P.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Amato, L. S.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Aminane, S.

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

An, K. S.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Ansari, S. A.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Bae, W. K.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Bai, S.

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Baratto, C.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Barkhouse, D. A. R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Bawendi, M. G.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Birnie, D. P.

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

Brown, P. R.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

Brzozowski, L.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Bulovic, V.

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

Cao, H. J.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Cao, S.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Cao, S. L.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Chabera, P.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Chae, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Chang, C.

Char, K.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Chen, E. G.

Chen, F.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Chen, L. W.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Chen, S. M.

H. Zhang and S. M. Chen, “An ZnMgO: PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes,” J. Mater. Chem. C 7, 2291–2298 (2019).
[Crossref]

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Chen, Y.

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Chen, Z. P.

Cho, M. H.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Cho, S.

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

Choi, J.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Choi, J. H.

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Chuang, C. H. M.

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

Chung, H. K.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Colvin, V. L.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Comini, E.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Dai, X. L.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Das Varma, G.

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

Davis, B. E.

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

de Arquer, F. P. G.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Debnath, R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Deng, Z. B.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Do, Y. R.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Frantsuzov, P. A.

K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
[Crossref]

Fu, Y.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

Gao, F.

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Garifullin, R.

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Geng, D.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

Ghobadi, A.

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Grossman, J. C.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

Guan, X. W.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Guan, Z. Y.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Guler, M. O.

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Guo, T. L.

Gupta, B. K.

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

Han, C. Y.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Ho, S. H.

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Holloway, P. H.

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

Hoogland, S.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Hu, X. F.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Huang, Z.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Hwang, E.

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

Hwangbo, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Jamakosmanovic, D.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Jang, J.

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

Ji, W. Y.

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

Jiang, W.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

Jiang, Y. B.

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Jin, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Jin, X.

Jin, Y. Z.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Jo, J. W.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Kalathil, S.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Kam, A. P. T.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Kamat, P. V.

K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
[Crossref]

Kang, Z. H.

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

Khan, M. M.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Kim, D.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

Kim, H.

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Kim, H. M.

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

Kim, J.

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Kim, J. H.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Kim, S.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Kim, Y.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Kim, Y. H.

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Kumar, N.

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

Kwak, J.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Lee, C.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Lee, H. J.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Lee, J.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Lee, K. H.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Lee, S.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Lee, W.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

Lettieri, S.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Levina, L.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Li, C. M.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Li, F.

Li, H. Y.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Li, L. S.

Li, Q. C.

Li, Q. H.

Li, X.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Li, Y. Y.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Lian, T.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Liang, X. Y.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Lin, Q. L.

Lin, S. Y.

Liu, P.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Liu, R.

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Liu, S. Y.

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Liu, Z.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Liu, Z. M.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Liu, Z. Y.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Lu, Z. H.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Lunt, R. R.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

Luo, Y.-R.

Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

Ma, Z. F.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Maddalena, P.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Messing, M. E.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Molahasani, N.

Moon, H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Murray, C. B.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Nisar, A.

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Niu, Y.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Norris, D. J.

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

Oh, M. S.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Oh, S. J.

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Okyay, A. K.

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Palmiano, E.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Park, J. W.

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Patel, H. S.

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

Patel, S.

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

Pattantyus-Abraham, A. G.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Peng, H. R.

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Peng, X. G.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Ponseca, C. S.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Pullerits, T.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Qian, L.

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

Quan, L. N.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Quintero-Bermudez, R.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Sargent, E. H.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Schlamp, M. C.

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

Shang, M. H.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Shen, H. B.

Y. B. Zhang, F. J. Zhang, H. Z. Wang, L. Wang, F. F. Wang, Q. L. Lin, H. B. Shen, and L. S. Li, “High-efficiency CdSe/CdS nanorod-based red light-emitting diodes,” Opt. Express 27, 7935–7944 (2019).
[Crossref]

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

Shin, H.

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

So, F.

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

Song, N.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Song, W.

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Srivastava, A. K.

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

Su, Q.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Sun, B.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Sun, B. Q.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Sun, K.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Sun, Y. Z.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Sundstrom, V.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Tan, C. S.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Tan, G. J.

Tang, A. W.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Tang, J.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Tang, Z.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Teng, F.

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Teplyakov, A. V.

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

Todros, S.

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Tvrdy, K.

K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
[Crossref]

Ulusoy, T. G.

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Viezbicke, B. D.

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

Voznyy, O.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Wallenberg, L. R.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Walters, G.

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

Wang, F. F.

Wang, H. X.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Wang, H. Z.

Wang, J. P.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Wang, L.

Wang, M.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Wang, W. G.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Wang, X. H.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Wei, J. L.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Weng, Y. L.

Wolowiec, R.

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

Wu, D.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Wu, T.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Wu, Z. W.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Wurfel, U.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Xu, S.

Xue, J. G.

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

Yan, Q. F.

Yang, B.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Yang, H.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

Yang, W. Y.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Yang, Z. B.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Ye, Y.

Ye, Z. Z.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Yin, W. P.

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

Yong, S. H.

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Yu, J. H.

Zang, Z. G.

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Zhang, F. J.

Zhang, F. L.

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Zhang, H.

H. Zhang and S. M. Chen, “An ZnMgO: PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes,” J. Mater. Chem. C 7, 2291–2298 (2019).
[Crossref]

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Zhang, H. Z.

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

Zhang, Q.

Zhang, S. D.

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

Zhang, Y. B.

Zhang, Z. X.

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Zhao, F.

Zhao, J. L.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Zhao, N.

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

Zhao, W. F.

Zheng, J. J.

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

Zheng, K. B.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

Zheng, Y.

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

Zhou, X. T.

Zhu, H.

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

Zidek, K.

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

ACS Appl. Mater. Inter. (5)

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers,” ACS Appl. Mater. Inter. 10, 17295–17300 (2018).
[Crossref]

Y. Z. Sun, W. G. Wang, H. Zhang, Q. Su, J. L. Wei, P. Liu, S. M. Chen, and S. D. Zhang, “High-performance quantum dot light-emitting diodes based on Al-doped ZnO nanoparticles electron transport layer,” ACS Appl. Mater. Inter. 10, 18902–18909 (2018).
[Crossref]

H. M. Kim, S. Cho, J. Kim, H. Shin, and J. Jang, “Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes,” ACS Appl. Mater. Inter. 10, 24028–24036 (2018).
[Crossref]

S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, C. M. Li, X. W. Guan, W. Y. Yang, M. H. Shang, and T. Wu, “Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer,” ACS Appl. Mater. Inter. 9, 15605–15614 (2017).
[Crossref]

H. M. Kim, D. Geng, J. Kim, E. Hwang, and J. Jang, “Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes,” ACS Appl. Mater. Inter. 8, 28727–28736 (2016).
[Crossref]

ACS Nano (4)

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovic, “Energy level modification in lead sulfide quantum dot thin films through ligand exchange,” ACS Nano 8, 5863–5872 (2014).
[Crossref]

J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. Pattantyus-Abraham, D. Jamakosmanovic, and E. H. Sargent, “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability,” ACS Nano 4, 869–878 (2010).
[Crossref]

N. Song, H. Zhu, Z. Liu, Z. Huang, D. Wu, and T. Lian, “Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy,” ACS Nano 7, 1599–1608 (2013).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device,” ACS Nano 11, 1982–1990 (2017).
[Crossref]

ACS Photon. (1)

F. Chen, Z. Y. Liu, Z. Y. Guan, Z. M. Liu, X. Li, Z. B. Deng, F. Teng, and A. W. Tang, “Chloride-passivated Mg-doped ZnO nanoparticles for improving performance of cadmium-free, quantum-dot light-emitting diodes,” ACS Photon. 5, 3704–3711 (2018).
[Crossref]

Adv. Energy Mater. (1)

S. Bai, Y. Z. Jin, X. Y. Liang, Z. Z. Ye, Z. W. Wu, B. Q. Sun, Z. F. Ma, Z. Tang, J. P. Wang, U. Wurfel, F. Gao, and F. L. Zhang, “Ethanedithiol treatment of solution-processed ZnO thin films: controlling the intragap states of electron transporting interlayers for efficient and stable inverted organic photovoltaics,” Adv. Energy Mater. 5, 1401606 (2015).
[Crossref]

Adv. Mater. (2)

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. G. de Arquer, R. Quintero-Bermudez, Y. Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. H. Lu, O. Voznyy, and E. H. Sargent, “Chloride passivation of ZnO electrodes improves charge extraction in colloidal quantum dot photovoltaics,” Adv. Mater. 29, 1702350 (2017).
[Crossref]

W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, “Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient,” Adv. Mater. 21, 1690–1694 (2009).
[Crossref]

Chem. Mater. (3)

J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do, and H. Yang, “Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer,” Chem. Mater. 27, 197–204 (2015).
[Crossref]

S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater. 26, 4528–4534 (2014).
[Crossref]

F. Gao, S. Aminane, S. Bai, and A. V. Teplyakov, “Chemical protection of material morphology: robust and gentle gas-phase surface functionalization of ZnO with propiolic acid,” Chem. Mater. 29, 4063–4071 (2017).
[Crossref]

Eur. J. Inorg. Chem. (1)

N. Kumar, A. K. Srivastava, H. S. Patel, B. K. Gupta, and G. Das Varma, “Facile synthesis of ZnO-reduced graphene oxide nanocomposites for NO2 gas sensing applications,” Eur. J. Inorg. Chem. 2015, 1912–1923 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993).
[Crossref]

K. Zidek, K. B. Zheng, C. S. Ponseca, M. E. Messing, L. R. Wallenberg, P. Chabera, M. Abdellah, V. Sundstrom, and T. Pullerits, “Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study,” J. Am. Chem. Soc. 134, 12110–12117 (2012).
[Crossref]

J. Mater. Chem. C (1)

H. Zhang and S. M. Chen, “An ZnMgO: PVP inorganic-organic hybrid electron transport layer: towards efficient bottom-emission and transparent quantum dot light-emitting diodes,” J. Mater. Chem. C 7, 2291–2298 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Met. Mater. Int. (1)

J. H. Choi, J. Kim, S. J. Oh, D. Kim, Y. H. Kim, H. Chae, and H. Kim, “Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3,” Met. Mater. Int. 22, 723–729 (2016).
[Crossref]

Nanoscale (3)

Y. Z. Sun, Y. B. Jiang, H. R. Peng, J. L. Wei, S. D. Zhang, and S. M. Chen, “Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer,” Nanoscale 9, 8962–8969 (2017).
[Crossref]

W. Y. Ji, H. B. Shen, H. Zhang, Z. H. Kang, and H. Z. Zhang, “Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer,” Nanoscale 10, 11103–11109 (2018).
[Crossref]

S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm,” Nanoscale 5, 9238–9246 (2013).
[Crossref]

Nanotechnology (1)

S. Lettieri, L. S. Amato, P. Maddalena, E. Comini, C. Baratto, and S. Todros, “Recombination dynamics of deep defect states in zinc oxide nanowires,” Nanotechnology 20, 175706 (2009).
[Crossref]

Nat. Mater. (1)

C. H. M. Chuang, P. R. Brown, V. Bulovic, and M. G. Bawendi, “Improved performance and stability in quantum dot solar cells through band alignment engineering,” Nat. Mater. 13, 796–801 (2014).
[Crossref]

Nat. Photonics (1)

L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5, 543–548 (2011).
[Crossref]

Nature (2)

V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature 370, 354–357 (1994).
[Crossref]

X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature 515, 96–99 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Status Solidi B (1)

B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie, “Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system,” Phys. Status Solidi B 252, 1700–1710 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, “Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles,” Proc. Natl. Acad. Sci. USA 108, 29–34 (2011).
[Crossref]

RSC Adv. (2)

Y. Fu, D. Kim, W. Jiang, W. P. Yin, T. K. Ahn, and H. Chae, “Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots,” RSC Adv. 7, 40866–40872 (2017).
[Crossref]

H. Jin, H. Moon, W. Lee, H. Hwangbo, S. H. Yong, H. K. Chung, and H. Chae, “Charge balance control of quantum dot light emitting diodes with atomic layer deposited aluminum oxide interlayers,” RSC Adv. 9, 11634–11640 (2019).
[Crossref]

Sci. Rep. (1)

A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay, “A heterojunction design of single layer hole tunneling ZnO passivation wrapping around TiO2 nanowires for superior photocatalytic performance,” Sci. Rep. 6, 30587 (2016).
[Crossref]

Solar RRL (1)

H. X. Wang, S. L. Cao, B. Yang, H. Y. Li, M. Wang, X. F. Hu, K. Sun, and Z. G. Zang, “NH4Cl-modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process,” Solar RRL 4, 1900363 (2019).
[Crossref]

Other (1)

Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram for fabrication of inverted QLEDs.
Fig. 2.
Fig. 2. (a) Chemical profiling of ${\rm ZnO}\text{-}{\rm EDT}/{{\rm SiO}_2}$ using TOF-SIMS to detect the EDT molecule (S ions). (b) FTIR spectra of a ZnO and ZnO-EDT film deposited on ${{\rm SiO}_2}$ substrates.
Fig. 3.
Fig. 3. XPS survey spectra of a ZnO and ZnO-EDT: (a) S 2p, (b) C 1s, and (c) O 1s.
Fig. 4.
Fig. 4. (a) UV-Vis spectra of the ZnO and ZnO-EDT. Inset: Tauc plots of the ZnO and ZnO-EDT film on glass. (b) Change of the optical bandgap as a function of exposure time to ambient conditions. (c) and (d) Water contact angle of ZnO without EDT treatment and with EDT treatment.
Fig. 5.
Fig. 5. Electronic energy level alignment of ZnO. (a) Onset region and (b) offset region of the UPS spectra for each ZnO. (c) Schematic band alignment diagram of ZnO and ZnO-EDT determined from optical bandgap and UPS analysis.
Fig. 6.
Fig. 6. (a) PL spectra and (b) time-resolved PL spectra of different samples: glass/QDs, glass/ZnO/QDs, and glass/ZnO-EDT/QDs.
Fig. 7.
Fig. 7. Device characteristics of the inverted QLEDs. (a) Normalized EL spectrum of the device. (b) J–V, (c) L–J, and (d) CE–J-EQE characteristics of the devices with different EDT concentrations. (e) J–V characteristics of the electron-only devices with the structures of ITO/ZnO/QDs/ZnO/Al and ITO/ZnO-EDT/QDs/ZnO/Al.

Tables (2)

Tables Icon

Table 1. PL Decay Results of the QDs, ZnO/QDs, and ZnO-EDT/QDs

Tables Icon

Table 2. Summarized Device Performances of QLEDs with Different Concentrations of EDT

Metrics