Abstract

We present an alternative scheme for generating the asymmetric steering of microwave photons via using a superconducting circuit system, where a single $ \Delta $-type three-level fluxoninum qubit interacts dispersively with three superconducting resonators. The nondegenerate parametric down-conversion occurs among three microwave modes by adiabatically eliminating the atomic variables of the artificial atom, which is responsible for the existence of quantum correlation. Furthermore, the asymmetric steering is easily established with the help of coherent driving of the resonators, and its directionality can be controlled by adjusting the driving strengths to two modes among three modes without additional noise. The scheme we present is based on general quantum operations under conditions of decoherence and nonideal coupling efficiency, and the asymmetric steering of microwave photons is a useful resource for the construction of long-distance quantum communication networks in solid-state systems.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-way Einstein-Podolsky-Rosen steering via atomic coherence

Wenxue Zhong, Guangling Cheng, and Xiangming Hu
Opt. Express 25(10) 11584-11597 (2017)

Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states

Shuqin Zhai, Nan Yuan, and Kui Liu
J. Opt. Soc. Am. B 36(10) 2920-2926 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
    [Crossref]
  2. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
    [Crossref]
  3. E. Schrödinger, “Discussion of probability relations between separated systems,” in Proceedings of the Cambridge Philosophical Society (1935), vol. 31, p. 555.
  4. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  5. M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
    [Crossref]
  6. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
    [Crossref]
  7. Q. He and M. Reid, “Genuine multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 111, 250403 (2013).
    [Crossref]
  8. J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
    [Crossref]
  9. P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
    [Crossref]
  10. I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
    [Crossref]
  11. Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
    [Crossref]
  12. C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
    [Crossref]
  13. H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
    [Crossref]
  14. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
    [Crossref]
  15. Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
    [Crossref]
  16. Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
    [Crossref]
  17. P. Skrzypczyk and D. Cavalcanti, “Maximal randomness generation from steering inequality violations using qudits,” Phys. Rev. Lett. 120, 260401 (2018).
    [Crossref]
  18. C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
    [Crossref]
  19. J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
    [Crossref]
  20. M. Olsen, “Controlled asymmetry of Einstein-Podolsky-Rosen steering with an injected nondegenerate optical parametric oscillator,” Phys. Rev. Lett. 119, 160501 (2017).
    [Crossref]
  21. M. Olsen, “Asymmetric Gaussian harmonic steering in second-harmonic generation,” Phys. Rev. A 88, 051802 (2013).
    [Crossref]
  22. J. Li and M. Olsen, “Quantum correlations across two octaves from combined up-and down-conversion,” Phys. Rev. A 97, 043856 (2018).
    [Crossref]
  23. Q. He and M. Reid, “Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics,” Phys. Rev. A 88, 052121 (2013).
    [Crossref]
  24. Q. He and Z. Ficek, “Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system,” Phys. Rev. A 89, 022332 (2014).
    [Crossref]
  25. H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
    [Crossref]
  26. T. Gebremariam, M. Mazaheri, Y. Zeng, and C. Li, “Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system,” J. Opt. Soc. Am. B 36, 168–177 (2019).
    [Crossref]
  27. Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
    [Crossref]
  28. M. Olsen and A. Bradley, “Quantum-correlated twin-atom laser from a Bose-Hubbard system,” Phys. Rev. A 95, 063607 (2017).
    [Crossref]
  29. V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
    [Crossref]
  30. S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
    [Crossref]
  31. S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
    [Crossref]
  32. K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
    [Crossref]
  33. Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
    [Crossref]
  34. A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
    [Crossref]
  35. N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
    [Crossref]
  36. O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
    [Crossref]
  37. H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
    [Crossref]
  38. W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
    [Crossref]
  39. M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
    [Crossref]
  40. P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
    [Crossref]
  41. J. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
    [Crossref]
  42. Y. Hu and L. Tian, “Deterministic generation of entangled photons in superconducting resonator arrays,” Phys. Rev. Lett. 106, 257002 (2011).
    [Crossref]
  43. F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
    [Crossref]
  44. H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
    [Crossref]
  45. K. Moon and S. Girvin, “Theory of microwave parametric down-conversion and squeezing using circuit QED,” Phys. Rev. Lett. 95, 140504 (2005).
    [Crossref]
  46. J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
    [Crossref]
  47. Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
    [Crossref]
  48. W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
    [Crossref]
  49. Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
    [Crossref]
  50. V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
    [Crossref]
  51. G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
    [Crossref]
  52. V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
    [Crossref]
  53. A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
    [Crossref]
  54. J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
    [Crossref]
  55. Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
    [Crossref]
  56. P. Drummond and C. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980).
    [Crossref]
  57. C. W. Gardiner, Handbook of Stochastic Methods (Springer, 1985), vol. 3.
  58. Y. Yu and H. Wang, “Two-color continuous-variable entanglement generated in nondegenerate optical parametric oscillator,” Opt. Commun. 285, 2223–2226 (2012).
    [Crossref]
  59. C. Gardiner and M. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
    [Crossref]
  60. M. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A 40, 913–923 (1989).
    [Crossref]
  61. A. Monras, “Optimal phase measurements with pure Gaussian states,” Phys. Rev. A 73, 033821 (2006).
    [Crossref]

2019 (3)

H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
[Crossref]

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

T. Gebremariam, M. Mazaheri, Y. Zeng, and C. Li, “Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system,” J. Opt. Soc. Am. B 36, 168–177 (2019).
[Crossref]

2018 (4)

P. Skrzypczyk and D. Cavalcanti, “Maximal randomness generation from steering inequality violations using qudits,” Phys. Rev. Lett. 120, 260401 (2018).
[Crossref]

J. Li and M. Olsen, “Quantum correlations across two octaves from combined up-and down-conversion,” Phys. Rev. A 97, 043856 (2018).
[Crossref]

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

2017 (7)

M. Olsen and A. Bradley, “Quantum-correlated twin-atom laser from a Bose-Hubbard system,” Phys. Rev. A 95, 063607 (2017).
[Crossref]

M. Olsen, “Controlled asymmetry of Einstein-Podolsky-Rosen steering with an injected nondegenerate optical parametric oscillator,” Phys. Rev. Lett. 119, 160501 (2017).
[Crossref]

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
[Crossref]

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

2016 (3)

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

2015 (7)

H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
[Crossref]

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
[Crossref]

2014 (6)

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref]

Q. He and Z. Ficek, “Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system,” Phys. Rev. A 89, 022332 (2014).
[Crossref]

2013 (6)

M. Olsen, “Asymmetric Gaussian harmonic steering in second-harmonic generation,” Phys. Rev. A 88, 051802 (2013).
[Crossref]

Q. He and M. Reid, “Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics,” Phys. Rev. A 88, 052121 (2013).
[Crossref]

Q. He and M. Reid, “Genuine multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
[Crossref]

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

2012 (5)

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

Y. Yu and H. Wang, “Two-color continuous-variable entanglement generated in nondegenerate optical parametric oscillator,” Opt. Commun. 285, 2223–2226 (2012).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

2011 (3)

J. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref]

Y. Hu and L. Tian, “Deterministic generation of entangled photons in superconducting resonator arrays,” Phys. Rev. Lett. 106, 257002 (2011).
[Crossref]

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

2010 (4)

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
[Crossref]

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

2009 (4)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

2007 (1)

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

2006 (1)

A. Monras, “Optimal phase measurements with pure Gaussian states,” Phys. Rev. A 73, 033821 (2006).
[Crossref]

2005 (1)

K. Moon and S. Girvin, “Theory of microwave parametric down-conversion and squeezing using circuit QED,” Phys. Rev. Lett. 95, 140504 (2005).
[Crossref]

1989 (1)

M. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A 40, 913–923 (1989).
[Crossref]

1985 (1)

C. Gardiner and M. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[Crossref]

1980 (1)

P. Drummond and C. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Abdumalikov, A.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Adesso, G.

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Adhikari, P.

P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
[Crossref]

Andersen, U. L.

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Armstrong, S.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Astafiev, O.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Bachor, H.

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Bachor, H.-A.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Baker, T. J.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Baur, M.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Bennet, A. J.

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

Bialczak, R. C.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Bianchetti, R.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Blais, A.

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Bourassa, J.

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

Bowen, W.

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Bowles, J.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Bradley, A.

M. Olsen and A. Bradley, “Quantum-correlated twin-atom laser from a Bose-Hubbard system,” Phys. Rev. A 95, 063607 (2017).
[Crossref]

Branciard, C.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Broadbent, C. J.

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

Brunner, N.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Cavaillès, A.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Cavalcanti, D.

P. Skrzypczyk and D. Cavalcanti, “Maximal randomness generation from steering inequality violations using qudits,” Phys. Rev. Lett. 120, 260401 (2018).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref]

Cavalcanti, E. G.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Chen, J.-L.

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Chen, K.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Chen, Y.-A.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Chen, Y.-N.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Collett, M.

C. Gardiner and M. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[Crossref]

Devoret, M. H.

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

Diamanti, E.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Ding, J.-H.

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

Dixon, P. B.

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

Doherty, A. C.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Drummond, P.

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

P. Drummond and C. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980).
[Crossref]

Dutton, Z.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Eberle, T.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ferguson, D. G.

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

Ficek, Z.

Q. He and Z. Ficek, “Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system,” Phys. Rev. A 89, 022332 (2014).
[Crossref]

Filipp, S.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Fink, J.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Francica, F.

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

Franz, T.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Gardiner, C.

C. Gardiner and M. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[Crossref]

P. Drummond and C. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980).
[Crossref]

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods (Springer, 1985), vol. 3.

Gebremariam, T.

Ghafari, F.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Girvin, S.

K. Moon and S. Girvin, “Theory of microwave parametric down-conversion and squeezing using circuit QED,” Phys. Rev. Lett. 95, 140504 (2005).
[Crossref]

Glazman, L. I.

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

Gong, Q.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
[Crossref]

Göppl, M.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Guccione, G.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Gühne, O.

H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
[Crossref]

Guo, G.-C.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Hafezi, M.

P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
[Crossref]

Händchen, V.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

He, Q.

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
[Crossref]

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Q. He and Z. Ficek, “Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system,” Phys. Rev. A 89, 022332 (2014).
[Crossref]

Q. He and M. Reid, “Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics,” Phys. Rev. A 88, 052121 (2013).
[Crossref]

Q. He and M. Reid, “Genuine multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

Howell, J. C.

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

Howland, G. A.

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

Hu, Y.

Y. Hu and L. Tian, “Deterministic generation of entangled photons in superconducting resonator arrays,” Phys. Rev. Lett. 106, 257002 (2011).
[Crossref]

Huang, C.-Y.

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

Ian, H.

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Il’ichev, E.

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Inomata, K.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Jacobs, K.

F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
[Crossref]

Janousek, J.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Jia, W.

W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
[Crossref]

Jones, S. J.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Joo, J.

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

Kamal, A.

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

Karlsson, A.

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

Kelly, W. R.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Kline, J. S.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Koch, J.

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

Kogias, I.

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Kuang, L.-M.

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

Lam, P. K.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Lambert, N.

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

Laurat, J.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Le Jeannic, H.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Lee, A. R.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Leek, P.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Lenander, M.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Leuchs, G.

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Li, C.

Li, C.-F.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Li, C.-M.

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Li, G.

H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
[Crossref]

Li, J.

J. Li and M. Olsen, “Quantum correlations across two octaves from combined up-and down-conversion,” Phys. Rev. A 97, 043856 (2018).
[Crossref]

Li, Y.

Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
[Crossref]

Liu, Y.-X.

W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
[Crossref]

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Lu, W.-J.

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

Lu, Y.-T.

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

Lucero, E.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Manucharyan, V. E.

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

Mariantoni, M.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Markham, D.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Masluk, N. A.

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

Mazaheri, M.

Monras, A.

A. Monras, “Optimal phase measurements with pure Gaussian states,” Phys. Rev. A 73, 033821 (2006).
[Crossref]

Mookerji, B.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Moon, K.

K. Moon and S. Girvin, “Theory of microwave parametric down-conversion and squeezing using circuit QED,” Phys. Rev. Lett. 95, 140504 (2005).
[Crossref]

Nakamura, Y.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Nam, S.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Nam, S. W.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Navascués, M.

P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref]

Neeley, M.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Nguyen, H. C.

H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
[Crossref]

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Nguyen, H.-V.

H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
[Crossref]

Nori, F.

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

J. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref]

O’Connell, A.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Ohki, T. A.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Olsen, M.

J. Li and M. Olsen, “Quantum correlations across two octaves from combined up-and down-conversion,” Phys. Rev. A 97, 043856 (2018).
[Crossref]

M. Olsen and A. Bradley, “Quantum-correlated twin-atom laser from a Bose-Hubbard system,” Phys. Rev. A 95, 063607 (2017).
[Crossref]

M. Olsen, “Controlled asymmetry of Einstein-Podolsky-Rosen steering with an injected nondegenerate optical parametric oscillator,” Phys. Rev. Lett. 119, 160501 (2017).
[Crossref]

M. Olsen, “Asymmetric Gaussian harmonic steering in second-harmonic generation,” Phys. Rev. A 88, 051802 (2013).
[Crossref]

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

Pan, J.-W.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Pappas, D. P.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Pashkin, Y. A.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Patel, R. B.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Peng, Z.

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

Piilo, J.

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

Pironio, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Plastina, F.

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Pryde, G. J.

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

Qiu, Y.

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

Quintino, M. T.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Ragy, S.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Raskop, J.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Reid, M.

Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
[Crossref]

Q. He and M. Reid, “Genuine multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

Q. He and M. Reid, “Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics,” Phys. Rev. A 88, 052121 (2013).
[Crossref]

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

M. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A 40, 913–923 (1989).
[Crossref]

Reid, M. D.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Rosales-Zárate, L.

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Samblowski, A.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Sanders, B. C.

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

Sank, D.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Scarani, V.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Schlafer, J.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

Schnabel, R.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Schneeloch, J.

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

Schrödinger, E.

E. Schrödinger, “Discussion of probability relations between separated systems,” in Proceedings of the Cambridge Philosophical Society (1935), vol. 31, p. 555.

Shalm, L. K.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Shaw, M.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Simmonds, R. W.

F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
[Crossref]

Skrzypczyk, P.

P. Skrzypczyk and D. Cavalcanti, “Maximal randomness generation from steering inequality violations using qudits,” Phys. Rev. Lett. 120, 260401 (2018).
[Crossref]

P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref]

Slussarenko, S.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Song, Y.-J.

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

Steffen, L.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Steinlechner, S.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Strauch, F. W.

F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
[Crossref]

Sun, C.

Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
[Crossref]

Sun, H.-C.

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Sun, K.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Tan, H.

H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
[Crossref]

Tang, J.-S.

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Taylor, J. M.

P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
[Crossref]

Teh, R. Y.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Tian, L.

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

Y. Hu and L. Tian, “Deterministic generation of entangled photons in superconducting resonator arrays,” Phys. Rev. Lett. 106, 257002 (2011).
[Crossref]

Tischler, N.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Tsai, J. S.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Verma, V.

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

Verma, V. B.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Vértesi, T.

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

Walborn, S. P.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Walk, N.

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

Wallraff, A.

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

Wang, H.

Y. Yu and H. Wang, “Two-color continuous-variable entanglement generated in nondegenerate optical parametric oscillator,” Opt. Commun. 285, 2223–2226 (2012).
[Crossref]

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Wang, M.

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Wang, Y.

W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
[Crossref]

Wang, Z.

Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
[Crossref]

Wehner, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Weides, M.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Wenner, J.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

Werner, R. F.

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Weston, M. M.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

Wiseman, H. M.

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Wollmann, S.

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

Wu, Y.-C.

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Xiang, Y.

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

Xiao, Y.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

Xiong, W.

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

Xu, J.-S.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Xu, X.-Y.

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Yamamoto, T.

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Ye, X.-J.

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

You, J.

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

J. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref]

Yu, Y.

Y. Yu and H. Wang, “Two-color continuous-variable entanglement generated in nondegenerate optical parametric oscillator,” Opt. Commun. 285, 2223–2226 (2012).
[Crossref]

Yuan, J.-B.

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

Zagoskin, A. M.

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Zeng, Y.

Zhang, Q.

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

Zhang, X.

H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
[Crossref]

Zhao, Y.-J.

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

Zhu, G.

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

P. Drummond and C. Gardiner, “Generalised P-representations in quantum optics,” J. Phys. A 13, 2353–2368 (1980).
[Crossref]

Nat. Photonics (1)

V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, “Observation of one-way Einstein-Podolsky–Rosen steering,” Nat. Photonics 6, 596–599 (2012).
[Crossref]

Nat. Phys. (1)

S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid, and P. K. Lam, “Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks,” Nat. Phys. 11, 167–172 (2015).
[Crossref]

Nature (1)

J. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref]

Opt. Commun. (1)

Y. Yu and H. Wang, “Two-color continuous-variable entanglement generated in nondegenerate optical parametric oscillator,” Opt. Commun. 285, 2223–2226 (2012).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (18)

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Y. Xiang, I. Kogias, G. Adesso, and Q. He, “Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications,” Phys. Rev. A 95, 010101 (2017).
[Crossref]

M. Olsen, “Asymmetric Gaussian harmonic steering in second-harmonic generation,” Phys. Rev. A 88, 051802 (2013).
[Crossref]

J. Li and M. Olsen, “Quantum correlations across two octaves from combined up-and down-conversion,” Phys. Rev. A 97, 043856 (2018).
[Crossref]

Q. He and M. Reid, “Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics,” Phys. Rev. A 88, 052121 (2013).
[Crossref]

Q. He and Z. Ficek, “Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system,” Phys. Rev. A 89, 022332 (2014).
[Crossref]

H. Tan, X. Zhang, and G. Li, “Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces,” Phys. Rev. A 91, 032121 (2015).
[Crossref]

Q. He, P. Drummond, M. Olsen, and M. Reid, “Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states,” Phys. Rev. A 86, 023626 (2012).
[Crossref]

M. Olsen and A. Bradley, “Quantum-correlated twin-atom laser from a Bose-Hubbard system,” Phys. Rev. A 95, 063607 (2017).
[Crossref]

H.-C. Sun, Y.-X. Liu, H. Ian, J. You, E. Il’ichev, and F. Nori, “Electromagnetically induced transparency and Autler-Townes splitting in superconducting flux quantum circuits,” Phys. Rev. A 89, 063822 (2014).
[Crossref]

C. Gardiner and M. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[Crossref]

M. Reid, “Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification,” Phys. Rev. A 40, 913–923 (1989).
[Crossref]

A. Monras, “Optimal phase measurements with pure Gaussian states,” Phys. Rev. A 73, 033821 (2006).
[Crossref]

C.-Y. Huang, N. Lambert, C.-M. Li, Y.-T. Lu, and F. Nori, “Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. A 99, 012302 (2019).
[Crossref]

Y.-J. Zhao, J.-H. Ding, Z. Peng, and Y.-X. Liu, “Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,” Phys. Rev. A 95, 043806 (2017).
[Crossref]

W. Jia, Y. Wang, and Y.-X. Liu, “Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits,” Phys. Rev. A 96, 053832 (2017).
[Crossref]

Z. Wang, C. Sun, and Y. Li, “Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup,” Phys. Rev. A 91, 043801 (2015).
[Crossref]

Y. Qiu, W. Xiong, L. Tian, and J. You, “Coupling spin ensembles via superconducting flux qubits,” Phys. Rev. A 89, 042321 (2014).
[Crossref]

Phys. Rev. B (2)

V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 024521 (2012).
[Crossref]

G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, “Circuit QED with fluxonium qubits: theory of the dispersive regime,” Phys. Rev. B 87, 024510 (2013).
[Crossref]

Phys. Rev. Lett. (25)

Y. Hu and L. Tian, “Deterministic generation of entangled photons in superconducting resonator arrays,” Phys. Rev. Lett. 106, 257002 (2011).
[Crossref]

F. W. Strauch, K. Jacobs, and R. W. Simmonds, “Arbitrary control of entanglement between two superconducting resonators,” Phys. Rev. Lett. 105, 050501 (2010).
[Crossref]

H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, and T. Yamamoto, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011).
[Crossref]

K. Moon and S. Girvin, “Theory of microwave parametric down-conversion and squeezing using circuit QED,” Phys. Rev. Lett. 95, 140504 (2005).
[Crossref]

J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010).
[Crossref]

J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner, “One-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 200402 (2014).
[Crossref]

M. Olsen, “Controlled asymmetry of Einstein-Podolsky-Rosen steering with an injected nondegenerate optical parametric oscillator,” Phys. Rev. Lett. 119, 160501 (2017).
[Crossref]

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[Crossref]

M. Baur, S. Filipp, R. Bianchetti, J. Fink, M. Göppl, L. Steffen, P. Leek, A. Blais, and A. Wallraff, “Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009).
[Crossref]

P. Adhikari, M. Hafezi, and J. M. Taylor, “Nonlinear optics quantum computing with circuit QED,” Phys. Rev. Lett. 110, 060503 (2013).
[Crossref]

S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, “Observation of genuine one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160403 (2016).
[Crossref]

K. Sun, X.-J. Ye, J.-S. Xu, X.-Y. Xu, J.-S. Tang, Y.-C. Wu, J.-L. Chen, C.-F. Li, and G.-C. Guo, “Experimental quantification of asymmetric Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 116, 160404 (2016).
[Crossref]

Y. Xiao, X.-J. Ye, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Demonstration of multisetting one-way Einstein-Podolsky-Rosen steering in two-qubit systems,” Phys. Rev. Lett. 118, 140404 (2017).
[Crossref]

A. Cavaillès, H. Le Jeannic, J. Raskop, G. Guccione, D. Markham, E. Diamanti, M. Shaw, V. Verma, S. Nam, and J. Laurat, “Demonstration of Einstein-Podolsky-Rosen steering using hybrid continuous-and discrete-variable entanglement of light,” Phys. Rev. Lett. 121, 170403 (2018).
[Crossref]

N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston, S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, and H. C. Nguyen, “Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 121, 100401 (2018).
[Crossref]

P. Skrzypczyk and D. Cavalcanti, “Maximal randomness generation from steering inequality violations using qudits,” Phys. Rev. Lett. 120, 260401 (2018).
[Crossref]

Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 180502 (2015).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref]

Q. He and M. Reid, “Genuine multipartite Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 111, 250403 (2013).
[Crossref]

J. Schneeloch, P. B. Dixon, G. A. Howland, C. J. Broadbent, and J. C. Howell, “Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements,” Phys. Rev. Lett. 110, 130407 (2013).
[Crossref]

P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref]

Q. He, Q. Gong, and M. Reid, “Classifying directional Gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord,” Phys. Rev. Lett. 114, 060402 (2015).
[Crossref]

C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref]

H. C. Nguyen, H.-V. Nguyen, and O. Gühne, “Geometry of Einstein-Podolsky-Rosen correlations,” Phys. Rev. Lett. 122, 240401 (2019).
[Crossref]

Rev. Mod. Phys. (3)

M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. K. Lam, H. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865 (2009).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Sci. Rep. (2)

A. Karlsson, F. Francica, J. Piilo, and F. Plastina, “Quantum Zeno-type effect and non-Markovianity in a three-level system,” Sci. Rep. 6, 39061 (2016).
[Crossref]

J.-B. Yuan, W.-J. Lu, Y.-J. Song, and L.-M. Kuang, “Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate,” Sci. Rep. 7, 7404 (2017).
[Crossref]

Science (2)

V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, “Fluxonium: single Cooper-pair circuit free of charge offsets,” Science 326, 113–116 (2009).
[Crossref]

O. Astafiev, A. M. Zagoskin, A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010).
[Crossref]

Other (2)

E. Schrödinger, “Discussion of probability relations between separated systems,” in Proceedings of the Cambridge Philosophical Society (1935), vol. 31, p. 555.

C. W. Gardiner, Handbook of Stochastic Methods (Springer, 1985), vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Transition frequencies of energy levels versus the flux bias $ {\Phi _{{\rm ext}}}/{\Phi _0} $ for the fluxonium qubit. (b) Charge matrix elements as a function of the flux bias $ {\Phi _{{\rm ext}}}/{\Phi _0} $.
Fig. 2.
Fig. 2. (a) Model for the coupling of a single fluxonium qubit with three superconducting resonators. (b) Corresponding transitions coupled to the different modes.
Fig. 3.
Fig. 3. Spectra of EPR steering as a function of the ratio of driving strengths, with the parameters $ \chi = 0.01,{ \epsilon _2} = 100,{ \epsilon _3} = 0,{\kappa _1} = {\kappa _2} = {\kappa _3} = 1 $ (a) and $ {\kappa _1} = {\kappa _2} = 0.75,{\kappa _3} = 1 $ (b).
Fig. 4.
Fig. 4. Positive-frequency $ {{\rm EPR}_\textit{ij}} $ spectra versus the frequency $ \omega $ under the condition of $ { \epsilon _1} = 50 $; other parameters the same as those in Fig. 3(a).
Fig. 5.
Fig. 5. EPR correlations versus the driving ratio $ { \epsilon _1}/{ \epsilon _3} $ in the absence of $ { \epsilon _2} $. The parameters are chosen as $ {\kappa _1} = {\kappa _2} = {\kappa _3} = 1 $ and $ \chi = 0.01,{ \epsilon _3} = 100 $.
Fig. 6.
Fig. 6. Positive-frequency spectra of the $ {{\rm EPR}_\textit{ij}} $ correlations as a function of the frequency $ \omega $, with the parameters $ {\kappa _1} = {\kappa _2} = 0.75,{\kappa _3} = 1,\chi = 0.01, $ $ { \epsilon _2} = 0,{ \epsilon _1} = 50,{ \epsilon _3} = 100 $ (a) and $ { \epsilon _1} = 100,{ \epsilon _3} = 50 $ (b).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

H f = 4 E C N 2 E J cos ( φ 2 π Φ e x t / Φ 0 ) + 1 2 E L φ 2 ,
H 0 = j = 1 3 ω j σ jj + v j a j a j ,
V = g 1 a 1 σ 21 + g 2 a 2 σ 32 + g 3 a 3 σ 31 + H . c . ,
S = g 1 Δ 1 a 1 σ 12 + g 2 Δ Δ 1 a 2 σ 23 + g 3 Δ a 3 σ 13 H . c . ,
H = H 0 + λ V + λ [ H 0 , S ] + λ 2 [ V , S ] + λ 2 2 [ S , [ S , H 0 ] ] + λ 3 2 [ S , [ S , V ] ] λ 3 6 [ S , [ S , [ S , H 0 ] ] ] + O ( λ 4 ) .
H e f f = H 0 + 1 2 [ V , S ] + 1 3 [ [ V , S ] , S ] = H 0 e f f + χ ( e i ϕ a 1 a 2 a 3 + e i ϕ a 1 a 2 a 3 ) ,
H p = i j = 1 3 ϵ j ( a j e i v jeff t a j e i v jeff t ) ,
H ~ = i j = 1 3 ϵ j ( a j a j ) + i χ ( a 1 a 2 a 3 a 1 a 2 a 3 ) .
ρ ˙ = i [ H ~ , ρ ] + j = 1 3 κ j ( 2 a j ρ a j a j a j ρ ρ a j a j ) ,
d α 1 d t = ϵ 1 κ 1 α 1 + χ α 2 α 3 + F α 1 , d α 1 d t = ϵ 1 κ 1 α 1 + χ α 2 α 3 + F α 1 , d α 2 d t = ϵ 2 κ 2 α 2 + χ α 1 α 3 + F α 2 , d α 2 d t = ϵ 2 κ 2 α 2 + χ α 1 α 3 + F α 2 , d α 3 d t = ϵ 3 κ 3 α 3 χ α 1 α 2 + F α 3 , d α 3 d t = ϵ 3 κ 3 α 3 χ α 1 α 2 + F α 3 ,
( ϵ 1 κ 1 α ¯ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) 2 = κ 3 χ 2 ϵ 2 2 α ¯ 1 ,
α ¯ 2 = ϵ 2 κ 2 + α ¯ 1 ( κ 1 α ¯ 1 ϵ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) κ 2 κ 3 ϵ 2 ,
α ¯ 3 = ( κ 1 α ¯ 1 ϵ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) κ 3 χ ϵ 2 .
( κ 1 α ¯ 1 ϵ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) 2 = κ 2 χ 2 ϵ 3 2 α ¯ 1 ,
α ¯ 2 = ( κ 1 α ¯ 1 ϵ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) κ 2 χ 3 ,
α ¯ 3 = ϵ 3 κ 3 α ¯ 1 ( κ 1 α ¯ 1 ϵ 1 ) ( κ 2 κ 3 + χ 2 α ¯ 1 2 ) κ 2 κ 3 ϵ 3 .
d d t δ R ( t ) = A δ R ( t ) + B d F ,
S ( ω ) = ( A + i ω I ) 1 D ( A T i ω I ) 1 ,
D ( 1 , 3 ) = D ( 3 , 1 ) = χ α ¯ 3 , D ( 2 , 4 ) = D ( 4 , 2 ) = χ α ¯ 3 .
A = [ κ 1 0 0 χ α ¯ 3 χ α ¯ 2 0 0 κ 1 χ α ¯ 3 0 0 χ α ¯ 2 0 χ α ¯ 3 κ 2 0 χ α ¯ 1 0 χ α ¯ 3 0 0 κ 2 0 χ α ¯ 1 χ α ¯ 2 0 χ α ¯ 1 0 κ 3 0 0 χ α ¯ 2 0 χ α ¯ 1 0 κ 3 ] .
E P R jk ( ω ) = V inf ( X jk o ) V inf ( Y jk o ) < 1 , ( k j ) ,

Metrics