Abstract

Long-lived sub-levels of the electronic ground-state manifold of rare-earth ions in crystals can be used as atomic population reservoirs for photon echo-based quantum memories. We measure the dynamics of the Zeeman sub-levels of erbium ions that are doped into a lithium niobate waveguide, finding population lifetimes at cryogenic temperatures down to 0.7 K as long as seconds. Then, using these levels, we prepare and characterize atomic frequency combs (AFCs), which can serve as a memory for quantum light at 1532 nm wavelength. The results allow predicting a 0.1% memory efficiency, limited mainly by unwanted background absorption that we believe to be caused by excitation-induced erbium spin flips and frequency shifting due to two-level systems or non-equilibrium phonons. Hence, while it should be possible to create an AFC-based quantum memory in $ {{\rm Er}^{3 + }}{:}{{\rm Ti}^{4 + }}{:}{{\rm LiNbO}_3} $, improved crystal growth together with optimized AFC preparation will be required to make it suitable for applications in quantum communication.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reliable coherent optical memory based on a laser-written waveguide

Chao Liu, Zong-Quan Zhou, Tian-Xiang Zhu, Liang Zheng, Ming Jin, Xiao Liu, Pei-Yun Li, Jian-Yin Huang, Yu Ma, Tao Tu, Tian-Shu Yang, Chuan-Feng Li, and Guang-Can Guo
Optica 7(2) 192-197 (2020)

Long-time-storage mechanism for Tm:YAG in a magnetic field

Nicklas Ohlsson, Mattias Nilsson, Stefan Kröll, and R. Krishna Mohan
Opt. Lett. 28(6) 450-452 (2003)

Measurement of photon echoes in Er:Y2SiO5 at 1.5  µm with a diode laser and an amplifier

R. M. Macfarlane, T. L. Harris, Y. Sun, R. L. Cone, and R. W. Equall
Opt. Lett. 22(12) 871-873 (1997)

References

  • View by:
  • |
  • |
  • |

  1. W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
    [Crossref]
  2. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006), Vol. 83.
  3. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  4. M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
    [Crossref]
  5. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
    [Crossref]
  6. M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
    [Crossref]
  7. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
    [Crossref]
  8. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [Crossref]
  9. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
    [Crossref]
  10. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [Crossref]
  11. B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
    [Crossref]
  12. T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
    [Crossref]
  13. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
    [Crossref]
  14. S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
    [Crossref]
  15. T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
    [Crossref]
  16. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
    [Crossref]
  17. E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
    [Crossref]
  18. L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
    [Crossref]
  19. M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
    [Crossref]
  20. I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).
  21. M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
    [Crossref]
  22. R. Jankowiak and G. Small, “Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures,” Science 237, 618–625 (1987).
    [Crossref]
  23. I. Zschokke, Optical Spectroscopy of Glasses (Springer, 2012).
  24. L. Shu, Nonphotochemical hole burning and relaxation dynamics of amorphous solids at low temperature, Ph.D. thesis (Iowa State University, 1991).
  25. B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
    [Crossref]
  26. F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
    [Crossref]
  27. S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
    [Crossref]
  28. C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).
  29. C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
    [Crossref]
  30. N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.
  31. C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
    [Crossref]
  32. C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
    [Crossref]
  33. C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
    [Crossref]
  34. E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).
  35. W. B. Mims, “Electron spin echoes,” in Electron Paramagnetic Resonance (Plenum, 1972).
  36. Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
    [Crossref]
  37. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
    [Crossref]
  38. M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
    [Crossref]

2019 (1)

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

2018 (1)

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

2016 (1)

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

2015 (3)

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

2014 (2)

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

2013 (1)

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

2012 (2)

Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

2011 (2)

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

2010 (6)

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[Crossref]

2009 (3)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

2008 (3)

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

2006 (1)

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[Crossref]

1998 (1)

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

1987 (1)

R. Jankowiak and G. Small, “Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures,” Science 237, 618–625 (1987).
[Crossref]

1986 (1)

B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
[Crossref]

Afzelius, M.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Ahlefeldt, R. L.

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[Crossref]

Askarani, M. F.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Babbitt, R. W.

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Babbitt, W.

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

Bartholomew, J. G.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Bettinelli, M.

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Bottger, T.

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Böttger, T.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

Bussieres, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Carter, T. P.

B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
[Crossref]

Cavalli, E.

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Chaneliére, T.

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

Clausen, C.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Cone, R.

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

Cone, R. L.

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Craiciu, I.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

de Riedmatten, H.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Falamarzi, M.

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

Faraon, A.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Fearey, B. L.

B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
[Crossref]

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Gisin, N.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Graf, F. R.

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

Gündogan, M.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

Hastings-Simon, S.

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Hedges, M. P.

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Itoh, K. M.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

Jacquier, B.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006), Vol. 83.

Jankowiak, R.

R. Jankowiak and G. Small, “Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures,” Science 237, 618–625 (1987).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Kindem, J. M.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Kometa, S. T.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

Kröll, S.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Kutluer, K.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

Lauritzen, B.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Ledingham, P. M.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

Lei, M.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Liu, G.

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006), Vol. 83.

Lutz, T.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Lyon, S. A.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

Macfarlane, R.

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

Macfarlane, R. M.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Mazzera, M.

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

Merkel, K. D.

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Mims, W. B.

W. B. Mims, “Electron spin echoes,” in Electron Paramagnetic Resonance (Plenum, 1972).

Minár, J.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Miyazono, E.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Moiseev, S.

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

Nam, S. W.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Oblak, D.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

Petersen, E. S.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

Puigibert, M.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Rancic, M.

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

Renn, A.

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

Ricken, R.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Rippe, L.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

Rochman, J.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Sabooni, M.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

Saglamyurek, E.

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Sellars, M.

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

Sellars, M. J.

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

Shaw, M. D.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Shu, L.

L. Shu, Nonphotochemical hole burning and relaxation dynamics of amorphous solids at low temperature, Ph.D. thesis (Iowa State University, 1991).

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

Sinclair, N.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

Slater, J. A.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Small, G.

R. Jankowiak and G. Small, “Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures,” Science 237, 618–625 (1987).
[Crossref]

Small, G. J.

B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
[Crossref]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Staudt, M. U.

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Sun, Y.

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Thewalt, M. L.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

Thiel, C.

Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

Thiel, C. W.

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

Thuresson, A.

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

Tittel, W.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

Tyryshkin, A. M.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

Usmani, I.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

van Mechelen, J. L. M.

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

Veissier, L.

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

Verma, V. B.

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Wild, U. P.

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

Zhong, T.

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

Zschokke, I.

I. Zschokke, Optical Spectroscopy of Glasses (Springer, 2012).

Zumofen, G.

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

Chem. Phys. (1)

B. L. Fearey, T. P. Carter, and G. J. Small, “New studies of non-photochemical holes of dyes and rare-earth ions in polymers. II. Laser-induced hole filling,” Chem. Phys. 101, 279–289 (1986).
[Crossref]

J. Lumin. (2)

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Er+3:LiNbO3,” J. Lumin. 130, 1603–1609 (2010).
[Crossref]

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3,” J. Lumin. 130, 1598–1602 (2010).
[Crossref]

J. Phys. B (1)

C. Thiel, R. Macfarlane, T. Böttger, Y. Sun, R. Cone, and W. Babbitt, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).
[Crossref]

Laser Photon. Rev. (1)

W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, “Photon‐echo quantum memory in solid state systems,” Laser Photon. Rev. 4, 244–267 (2010).
[Crossref]

Laser Phys. (1)

C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24, 106002 (2014).
[Crossref]

Nat. Photonics (2)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Nat. Phys. (1)

M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, “Coherence time of over a second in a telecom-compatible quantum memory storage material,” Nat. Phys. 14, 50–54 (2018).
[Crossref]

Nature (2)

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

New J. Phys. (1)

M. Sabooni, S. T. Kometa, A. Thuresson, S. Kröll, and L. Rippe, “Cavity-enhanced storage-preparing for high-efficiency quantum memories,” New J. Phys. 15, 035025 (2013).
[Crossref]

Phys. Rev. A (3)

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

B. Lauritzen, S. Hastings-Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “State preparation by optical pumping in erbium-doped solids using stimulated emission and spin mixing,” Phys. Rev. A 78, 043402 (2008).
[Crossref]

M. Afzelius and C. Simon, “Impedance-matched cavity quantum memory,” Phys. Rev. A 82, 022310 (2010).
[Crossref]

Phys. Rev. Appl. (1)

M. F. Askarani, M. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, and W. Tittel, “Storage and re-emission of heralded telecommunication-wavelength single photons using a crystal waveguide,” Phys. Rev. Appl. 11, 054056 (2019).
[Crossref]

Phys. Rev. B (8)

E. Saglamyurek, T. Lutz, L. Veissier, M. P. Hedges, C. W. Thiel, R. L. Cone, and W. Tittel, “Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fibre,” Phys. Rev. B 92, 241111 (2015).
[Crossref]

L. Veissier, M. Falamarzi, T. Lutz, E. Saglamyurek, C. W. Thiel, R. L. Cone, and W. Tittel, “Optical decoherence and spectral diffusion in an erbium-doped silica glass fibre featuring long-lived spin sublevels,” Phys. Rev. B 94, 195138 (2016).
[Crossref]

S. Hastings-Simon, B. Lauritzen, M. U. Staudt, J. L. M. van Mechelen, C. Simon, H. De Riedmatten, M. Afzelius, and N. Gisin, “Zeeman-level lifetimes in Er3+:Y2SiO5,” Phys. Rev. B 78, 085410 (2008).
[Crossref]

T. Böttger, C. Thiel, Y. Sun, and R. Cone, “Optical decoherence and spectral diffusion at 1.5 µm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er+3 concentration,” Phys. Rev. B 73, 075101 (2006).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5,” Phys. Rev. B 79, 115104 (2009).
[Crossref]

F. R. Graf, A. Renn, G. Zumofen, and U. P. Wild, “Photon-echo attenuation by dynamical processes in rare-earth-ion-doped crystals,” Phys. Rev. B 58, 5462–5478 (1998).
[Crossref]

S. Hastings-Simon, M. Afzelius, J. Minář, M. U. Staudt, B. Lauritzen, H. de Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M. Bettinelli, “Spectral hole-burning spectroscopy in Nd3+:YVO4,” Phys. Rev. B 77, 125111 (2008).
[Crossref]

Y. Sun, C. Thiel, and R. Cone, “Optical decoherence and energy level structure of 0.1% Tm3+:LiNbO3,” Phys. Rev. B 85, 165106 (2012).
[Crossref]

Phys. Rev. Lett. (4)

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. Gündoğan, P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de Riedmatten, “Solid state spin-wave quantum memory for time-bin qubits,” Phys. Rev. Lett. 114, 230501 (2015).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104, 040503 (2010).
[Crossref]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[Crossref]

Science (1)

R. Jankowiak and G. Small, “Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures,” Science 237, 618–625 (1987).
[Crossref]

Other (8)

I. Zschokke, Optical Spectroscopy of Glasses (Springer, 2012).

L. Shu, Nonphotochemical hole burning and relaxation dynamics of amorphous solids at low temperature, Ph.D. thesis (Iowa State University, 1991).

C. W. Thiel, R. M. Macfarlane, R. L. Cone, Y. Sun, T. Bottger, K. D. Merkel, and R. W. Babbitt, “Spectroscopy and dynamics of Er+3:LiNbO3 at 1.5 microns for quantum information and signal processing applications,” in 10th International Meeting on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM) (2009).

N. Sinclair, C. W. Thiel, D. Oblak, E. Saglamyurek, R. L. Cone, and W. Tittel, “Properties of a Tm-doped LiNbO3 waveguide at low temperatures,” in preparation.

E. S. Petersen, A. M. Tyryshkin, K. M. Itoh, M. L. Thewalt, and S. A. Lyon, “Measuring electron spin flip-flops through nuclear spin echo decays,” arXiv preprint arXiv:1709.02881 (2017).

W. B. Mims, “Electron spin echoes,” in Electron Paramagnetic Resonance (Plenum, 1972).

I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, “Nanophotonic quantum storage at telecommunications wavelength,” arXiv preprint arXiv:1904.08052 (2019).

G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2006), Vol. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Simplified energy level structure of the $ ^4{{\rm I}_{15/2}}{ \leftrightarrow ^4}{{\rm I}_{13/2}} $ transition of $ {{\rm Er}^{3 + }} $. Excited and ground levels are indicated with $ |e\rangle $ and $ |g\rangle $, respectively, and electronic Zeeman sub-levels with $ |{m_s} = \pm 1/2\rangle $. To create an atomic frequency comb (a periodic modulation of the frequency-dependent optical depth into equally spaced narrow peaks), persistent spectral holes are created (burned) by pumping all undesired population into shelving levels, $ e.g.\,|g,{m_s} = + 1/2\rangle $. (b) Example of an AFC, showing the resulting spectral population grating. (c) Experimental setup. Continuous-wave light at 1532 nm wavelength is directed through a phase modulator (PM) and an acousto-optic modulator (AOM), which allow frequency and intensity modulation. After passing a polarization controller (PC), the light creates spectral holes and AFC structures in the erbium-doped lithium niobate waveguide, and furthermore allows probing previously created structures with the help of a photo-detector (PD) and an oscilloscope. The PM is driven by a serrodyne voltage V(t) modulation similar to that depicted in the plot.
Fig. 2.
Fig. 2. Time-resolved spectral hole decays at magnetic fields of (a) 350 G, (b) 600 G, and (c) 800 G. (d) Long-decay relaxation rate versus magnetic field.
Fig. 3.
Fig. 3. Absorption profile of 200 MHz section of a 6.4 GHz wide AFC at $ \lambda = 1532.05 \,\, {\rm nm} $ and ${\rm B} = {3}\;{\rm kG}$. The gray shaded area indicates remaining background absorption. The central dip is caused by unmodulated pump laser light.
Fig. 4.
Fig. 4. Average background absorption as a function of AFC bandwidth.
Fig. 5.
Fig. 5. Laser-excitation-induced change of a spectral hole. Widths and depths of the pump and probe holes are plotted as a function of excitation power (see text for details).

Tables (1)

Tables Icon

Table 1. Background Absorption for 200 MHz Wide AFCs and Varying Frequency Differencesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 t l o n g = α Γ s + γ s B s e c h 2 ( g μ B B 2 k T ) .

Metrics