Abstract

A silicon photonic crystal (PhC)-based nonlinear Mach–Zehnder interferometer (NMZI) is used to design a new model for an all-optical NOT gate. The nonlinear arm of the NMZI is considered to be made of a slotted-PhC waveguide, where the slot is filled with silicon nanocrystal ($ {\rm SiNC}/{{\rm SiO}_2} $) material. The high nonlinearity of the $ {\rm SiNC}/{{\rm SiO}_2} $ and low group velocity of the PhC make it possible to attain a significant phase shift in low-power high-frequency pulses traveling through the nonlinear arm. A control wave is utilized to increase the phase shift by the cross-phase modulation phenomenon. A complete study on the phase variation is performed by varying various parameters such as powers and pulse widths of the probe and control signal. The study is used to determine the length of the nonlinear arm to calculate the transfer characteristic of the device. The transfer characteristic shows a successful inversion operation in the power range of 28–60 mW for a pulse width of 3 ps. The overall dimension of the device is found as $ \approx {112} \times {7}\,\,\unicode{x00B5}{\rm m^2} $. Tolerances of the device performance under fabrication imperfections are analyzed by allowing random variations in the positions and the radii of the holes. This study reveals that the inversion characteristic is sustained, even for the significant fabrication imperfections.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of the performance of Mach-Zehnder interferometric logic gates enhanced with coupled nonlinear ring- resonators

Francisco Cuesta-Soto, Alejandro Martínez, J. Blasco, and Javier Martí
Opt. Express 15(5) 2323-2335 (2007)

Monolithically integrated all-optical gate switch using intersubband transition in InGaAs/AlAsSb coupled double quantum wells

Ryoichi Akimoto, Shin-ichiro Gozu, Teruo Mozume, and Hiroshi Ishikawa
Opt. Express 19(14) 13386-13394 (2011)

High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits

Shatrughna Kumar and Mrinal Sen
J. Opt. Soc. Am. B 35(2) 362-371 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, G. Singh, A. Bisht, S. Sharma, and A. Amphawan, “Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers,” Appl. Opt. 54, 8479–8484 (2015).
    [Crossref]
  2. S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
    [Crossref]
  3. H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Opt. Laser Technol. 106, 385–397 (2018).
    [Crossref]
  4. M. Sen and M. K. Das, “Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides,” Opt. Lett. 38, 5192–5195 (2013).
    [Crossref]
  5. S. Kumar and M. Sen, “High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits,” J. Opt. Soc. Am. B 35, 362–371 (2018).
    [Crossref]
  6. Y. Khorrami, V. Ahmadi, M. Razaghi, and N. Das, “Picosecond and femtosecond asymmetric switching using a semiconductor optical amplifier-based Mach-Zehnder interferometer,” Appl. Opt. 57, 1634–1639 (2018).
    [Crossref]
  7. S. Medhekar and P. Paltani, “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt. 28, 229–236 (2009).
    [Crossref]
  8. A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
    [Crossref]
  9. C. Lacava, M. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach-Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
    [Crossref]
  10. G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
    [Crossref]
  11. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [Crossref]
  12. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [Crossref]
  13. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]
  14. A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
    [Crossref]
  15. Y. Li, K. Zhu, Z. Kang, W. L. Ho, R. Davidson, C. Lu, B. E. Little, and S. T. Chu, “CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion,” Photon. Res. 7, 1200–1208 (2019).
    [Crossref]
  16. P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.
  17. T. Datta and M. Sen, “Led pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
    [Crossref]
  18. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [Crossref]
  19. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).
  20. D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).
  21. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref]
  22. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
    [Crossref]
  23. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [Crossref]
  24. I. H. Rey, “Active slow light in silicon photonic crystals: tunable delay and Raman gain,” Ph. D. thesis (University of St. Andrews, 2012).
  25. N. A. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
    [Crossref]
  26. R. Meade, J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  27. S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.
  28. J. Gowar, Optical Communication Systems (Optoelectronics) (Prentice-Hall, 1984).
  29. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).
  30. I. D. Rukhlenko, “Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides,” J. Opt. 16, 015207 (2013).
    [Crossref]
  31. A. Di Falco, L. O. Faolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
    [Crossref]
  32. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
    [Crossref]

2019 (1)

2018 (3)

2017 (1)

T. Datta and M. Sen, “Led pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

2015 (2)

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

S. Kumar, G. Singh, A. Bisht, S. Sharma, and A. Amphawan, “Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers,” Appl. Opt. 54, 8479–8484 (2015).
[Crossref]

2013 (4)

S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
[Crossref]

M. Sen and M. K. Das, “Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides,” Opt. Lett. 38, 5192–5195 (2013).
[Crossref]

C. Lacava, M. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach-Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

I. D. Rukhlenko, “Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides,” J. Opt. 16, 015207 (2013).
[Crossref]

2011 (1)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
[Crossref]

2010 (3)

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

2009 (3)

S. Medhekar and P. Paltani, “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt. 28, 229–236 (2009).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
[Crossref]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[Crossref]

2008 (1)

A. Di Falco, L. O. Faolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

2007 (2)

2004 (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

2001 (1)

N. A. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[Crossref]

Agrawal, G. P.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

Ahmadi, V.

Ali, T. A.

H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Opt. Laser Technol. 106, 385–397 (2018).
[Crossref]

Amphawan, A.

Bhat, N. A.

N. A. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[Crossref]

Bisht, A.

Blasco, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Chi, Y.-C.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Chu, S. T.

Corcoran, B.

Cristiani, I.

Cuesta-Soto, F.

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Daldosso, N.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Das, M. K.

Das, N.

Datta, T.

T. Datta and M. Sen, “Led pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.

Davidson, R.

Di Falco, A.

A. Di Falco, L. O. Faolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Ebnali-Heidari, M.

Eggleton, B. J.

Faolain, L. O.

Fedeli, J. M.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Galán, J. V.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

García, J.

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

García-Rupérez, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Garrido, B.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gautier, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Gowar, J.

J. Gowar, Optical Communication Systems (Optoelectronics) (Prentice-Hall, 1984).

Grillet, C.

Guider, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Hernández, S.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Ho, W. L.

Huang, B.-J.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Hussein, H. M.

H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Opt. Laser Technol. 106, 385–397 (2018).
[Crossref]

Joannopoulos, J.

R. Meade, J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Jordana, E.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Kang, Z.

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Khorrami, Y.

Krauss, T.

A. Di Falco, L. O. Faolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Krauss, T. F.

Kumar, A.

S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
[Crossref]

Kumar, S.

S. Kumar and M. Sen, “High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits,” J. Opt. Soc. Am. B 35, 362–371 (2018).
[Crossref]

S. Kumar, G. Singh, A. Bisht, S. Sharma, and A. Amphawan, “Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers,” Appl. Opt. 54, 8479–8484 (2015).
[Crossref]

S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
[Crossref]

S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.

Lacava, C.

Lebour, Y.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Li, Y.

Lin, G.-R.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Lin, Q.

Lin, Y.-H.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Little, B. E.

Lu, C.

Marti, J.

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Martí, J.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Martínez, A.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Matsuo, S.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Meade, R.

R. Meade, J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Medhekar, S.

A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
[Crossref]

S. Medhekar and P. Paltani, “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt. 28, 229–236 (2009).
[Crossref]

Minzioni, P.

Monat, C.

Murakowski, J.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Nozaki, K.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Painter, O. J.

Paltani, P.

S. Medhekar and P. Paltani, “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt. 28, 229–236 (2009).
[Crossref]

Paltani, P. P.

A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
[Crossref]

Pavesi, L.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Pradhan, A. K.

S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.

Prather, D. W.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

Premaratne, M.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Rafat, N. H.

H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Opt. Laser Technol. 106, 385–397 (2018).
[Crossref]

Raghuwanshi, S. K.

S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
[Crossref]

Razaghi, M.

Rey, I. H.

I. H. Rey, “Active slow light in silicon photonic crystals: tunable delay and Raman gain,” Ph. D. thesis (University of St. Andrews, 2012).

Riboli, F.

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Rukhlenko, I. D.

I. D. Rukhlenko, “Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides,” J. Opt. 16, 015207 (2013).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
[Crossref]

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
[Crossref]

Sanchis, P.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

Sato, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Schneider, G.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Sen, M.

S. Kumar and M. Sen, “High-gain, low-threshold and small-footprint optical parametric amplifier for photonic integrated circuits,” J. Opt. Soc. Am. B 35, 362–371 (2018).
[Crossref]

T. Datta and M. Sen, “Led pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

M. Sen and M. K. Das, “Raman mediated all-optical cascadable inverter using silicon-on-insulator waveguides,” Opt. Lett. 38, 5192–5195 (2013).
[Crossref]

S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.

Sharkawy, A.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

Sharma, S.

Shi, S.

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

Shinya, A.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Singh, G.

Sipe, J.

N. A. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[Crossref]

Soljacic, M.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Sorel, M.

Spano, R.

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Srivastava, A.

A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
[Crossref]

Strain, M.

Su, S.-P.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Tsai, C.-T.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Wang, H.-Y.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

White, T. P.

Winn, J. N.

R. Meade, J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Wu, C.-I.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Wu, C.-L.

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Zhu, K.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

A. Di Falco, L. O. Faolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Fiber Integr. Opt. (1)

S. Medhekar and P. Paltani, “Novel all-optical switch using nonlinear Mach-Zehnder interferometer,” Fiber Integr. Opt. 28, 229–236 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2009).
[Crossref]

Int. J. Opt. (1)

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011).
[Crossref]

J. Opt. (1)

I. D. Rukhlenko, “Modeling nonlinear optical phenomena in silicon-nanocrystal composites and waveguides,” J. Opt. 16, 015207 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Nano Lett. (1)

A. Martínez, J. Blasco, P. Sanchis, J. V. Galán, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Martí, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010).
[Crossref]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[Crossref]

Nat. Photonics (1)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fj of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[Crossref]

Opt. Eng. (1)

S. Kumar, S. K. Raghuwanshi, and A. Kumar, “Implementation of optical switches using Mach-Zehnder interferometer,” Opt. Eng. 52, 097106 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

H. M. Hussein, T. A. Ali, and N. H. Rafat, “A review on the techniques for building all-optical photonic crystal logic gates,” Opt. Laser Technol. 106, 385–397 (2018).
[Crossref]

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. E (1)

N. A. Bhat and J. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[Crossref]

Pramana (1)

A. Srivastava, P. P. Paltani, and S. Medhekar, “Switching behaviour of a nonlinear Mach-Zehnder interferometer,” Pramana 74, 575–590 (2010).
[Crossref]

Sci. Rep. (1)

G.-R. Lin, S.-P. Su, C.-L. Wu, Y.-H. Lin, B.-J. Huang, H.-Y. Wang, C.-T. Tsai, C.-I. Wu, and Y.-C. Chi, “Si-rich siNx based Kerr switch enables optical data conversion up to 12  Gbit/s,” Sci. Rep. 5, 9611 (2015).
[Crossref]

Superlattices Microstruct. (1)

T. Datta and M. Sen, “Led pumped micron-scale all-silicon Raman amplifier,” Superlattices Microstruct. 110, 273–280 (2017).
[Crossref]

Other (8)

P. Sanchis, F. Cuesta-Soto, J. Blasco, J. García, A. Martínez, J. Marti, F. Riboli, and L. Pavesi, “All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2,” in 3rd IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 81–83.

R. Meade, J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

S. Kumar, T. Datta, A. K. Pradhan, and M. Sen, “Observation of pulse-phase shift in a highly-nonlinear slotted photonic crystal waveguide,” in 3rd International Conference on Microwave and Photonics (ICMAP) (IEEE, 2018), pp. 1–2.

J. Gowar, Optical Communication Systems (Optoelectronics) (Prentice-Hall, 1984).

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. Schneider, “Photonic crystals,” in Theory, Aplications and Fabrication (2009).

I. H. Rey, “Active slow light in silicon photonic crystals: tunable delay and Raman gain,” Ph. D. thesis (University of St. Andrews, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic of the Kerr-nonlinearity-based all-optical NOT gate.
Fig. 2.
Fig. 2. Proposed model of the all-optical NOT gate is based on silicon-slab photonic crystal NMZI. The NMZI consists of three efficient Y-junctions, a silicon nanocrystal embedded in slotted photonic crystal waveguide as a nonlinear arm, and a W1 waveguide as a linear arm.
Fig. 3.
Fig. 3. Transmission-spectrum of (a) Y-junction combiner and (b) Y-junction splitter.
Fig. 4.
Fig. 4. (a) Dispersion diagram of the guided bands calculated by using PWE of NSPCW. (b) Group-index and dispersion parameter of the complete guided band as a function of wavelength.
Fig. 5.
Fig. 5. (a) Dispersion diagram of W1 waveguide for the guided band calculated by using PWE. (b) Group-index and dispersion parameter of the complete guided band as a function of wavelength.
Fig. 6.
Fig. 6. Probe phase variation for various probe powers of 5 mW, 10 mW, 15 mW, and 20 mW along the length of NSPCW. Inset shows an enlarged view of up to 150 µm length of NSPCW.
Fig. 7.
Fig. 7. Variation in probe phase for different powers of the control signal, i.e., 1 mW, 2 mW, 3 mW, and 4 mW, keeping the power of the probe signal fixed at 10 mW. Inset shows an enlarged view of up to 150 µm length of NSPCW.
Fig. 8.
Fig. 8. Variation in the probe phase as the wavelength of the control signal varies from 1530 nm to 1545 nm, keeping the probe signal wavelength fixed at 1550 nm. Inset shows an enlarged view of up to 120 µm length of the NSPCW.
Fig. 9.
Fig. 9. Variation in the probe phase as the pulse width varies from 3 ps to 5 ps along the length of NSPCW. The wavelengths of the probe and control signals are considered as 1550 nm and 1545 nm, respectively. Inset shows an enlarged view of up to 150 µm length of NSPCW.
Fig. 10.
Fig. 10. Variation of phase of the probe signal along the length of W1 waveguide for three pulses of widths 2 ps, 3 ps, and 4 ps. The powers of the probe and control signals are 2 mW and 20 mW, respectively.
Fig. 11.
Fig. 11. Phase variation of the probe signal in the nonlinear arm of the NMZI for the applied input probe power. The pulse width of the probe/control signal and the length of the waveguide are considered as 3 ps/4 ps and 100 µm, respectively.
Fig. 12.
Fig. 12. Transfer characteristic of the all-optical NOT gate.
Fig. 13.
Fig. 13. Transfer characteristic of all-optical NOT gate for the various control signal powers from 4 mW to 12 mW. The length of the NSPCW is considered as 100 µm.
Fig. 14.
Fig. 14. Variation of randomness due to shifting in the position of air holes along the $z$ direction. (a) Dispersion plot; inset shows corresponding group index of the operating band of NSPCW. (b) Dispersion plot; inset shows corresponding group index of the operating band of W1 waveguide. (c) Transmission efficiency of the optical combiner and splitter for the considered operating wavelengths. (d) Corresponding transfer characteristic for considered operating wavelength.
Fig. 15.
Fig. 15. Variation of randomness due to shifting in the position of air holes along the $x$ direction. (a) Dispersion plot; inset shows corresponding group index of the operating band of NSPCW. (b) Dispersion plot; inset shows corresponding group index of the operating band of W1 waveguide. (c) Transmission efficiency of the optical combiner and splitter for the considered operating wavelengths. (d) Corresponding transfer characteristic for considered operating wavelength.
Fig. 16.
Fig. 16. Variation of randomness due to change in the radius of air holes. (a) Dispersion plot; inset shows corresponding group index of the operating band of NSPCW. (b) Dispersion plot; inset shows corresponding group index of the operating band of W1 waveguide. (c). Transmission efficiency of the optical combiner and splitter for the considered operating wavelengths. (d). Corresponding transfer characteristic for considered operating wavelength.

Tables (2)

Tables Icon

Table 1. Simulation Parameters for All-Optical NOT Gate

Tables Icon

Table 2. Summary of the Analysis of NSPCW

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A P z i m = 1 i m β mP m ! m A P t m = α lP S P ξ 2 A P σ aP S P ξ 2 ( 1 + i μ P ) N A P + i [ γ PP e S P 2 ξ | A P | 2 + 2 S P ξ S C ξ γ PC e | A C | 2 ] A P ,
A C z i m = 1 i m β mC m ! m A C t m = α lC S C ξ 2 A C σ aC S C ξ 2 ( 1 + i μ C ) N A C + i [ γ CC e S C 2 ξ | A C | 2 + 2 S C ξ S P ξ γ CP e | A P | 2 ] A C ,
Δ ϕ ( z ) = 2 π λ t ¯ V g .
N t = G ¯ N τ 0 ,
G ¯ = β T P A PP S P 2 ξ | A P | 4 2 ω P ( a e f f PP ) 2 + β T P A CC S C 2 ξ | A C | 4 2 ω P ( a e f f CC ) 2 + 2 β T P A PC S P ξ S C ξ | A P | 2 | A C | 2 ω P ( a e f f PC ) 2 .
a e f f jk = | F j ( x , y , ω j ) | 2 d x d y | F k ( x , y , ω k ) | 2 d x d y | F j ( x , y , ω j ) | 2 | F k ( x , y , ω k ) | 2 d x d y .
γ jk e = 2 π n 2 jk λ j a e f f jk + i β T P A jk 2 a e f f jk .