Abstract

Laser interaction with a water-immersed metal nanoparticle can bring about a condition such that a bubble is generated and the nanoparticle is evaporated. This phenomenon is strongly dependent on the laser parameters and the nanoparticle size. In this study, we simulate the behavior of a gold nanoparticle and its surrounding medium during interaction with a nanosecond-pulsed laser by considering nanoparticle size reduction, variations in the nanoparticle absorption cross section, and variations in thermal conductance at the nanoparticle–bubble interface. Results show that the bubble dynamics under a low-energy and long-pulse-width laser (so that it does not cause evaporation) strongly depends on the nanoparticle temperature behavior, while under higher laser energy, it is dependent on the amount of nanoparticle size reduction. Moreover, by comparing the nanoparticle thermal behavior with experimental data, we are able to estimate the thermal conductance at the nanoparticle–bubble interface. This simulation not only leads to nanoparticle size control but also helps in understanding the heat transfer processes at nanoscale.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco
Appl. Opt. 51(7) B30-B41 (2012)

Acoustic signals generated by laser-irradiated metal nanoparticles

Sergey Egerev, Sergey Ermilov, Oleg Ovchinnikov, Andrey Fokin, Dmitry Guzatov, Vasily Klimov, Andrey Kanavin, and Alexander Oraevsky
Appl. Opt. 48(7) C38-C45 (2009)

Potential of sub-microsecond laser pulse shaping for controlling microcavitation in selective retinal therapies

Pascal Deladurantaye, Sébastien Méthot, Ozzy Mermut, Pierre Galarneau, and Patrick J Rochette
Biomed. Opt. Express 11(1) 109-132 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
    [Crossref]
  2. A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
    [Crossref]
  3. J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
    [Crossref]
  4. A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
    [Crossref]
  5. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
    [Crossref]
  6. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
    [Crossref]
  7. D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomedicine 4, 813–845 (2009).
    [Crossref]
  8. E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
    [Crossref]
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  10. L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C 119, 13893–13900 (2015).
    [Crossref]
  11. A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
    [Crossref]
  12. M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
    [Crossref]
  13. D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2010).
    [Crossref]
  14. K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
    [Crossref]
  15. J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
    [Crossref]
  16. A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
    [Crossref]
  17. V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
    [Crossref]
  18. W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
    [Crossref]
  19. A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
    [Crossref]
  20. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
    [Crossref]
  21. S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
    [Crossref]
  22. J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
    [Crossref]
  23. K. Sasikumar and P. Keblinski, “Molecular dynamics investigation of nanoscale cavitation dynamics,” J. Chem. Phys. 141, 234508 (2014).
    [Crossref]
  24. J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
    [Crossref]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  26. B. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286–3296 (1996).
    [Crossref]
  27. F. Goodman and H. Wachman, Dynamics of Gas-Surface Scattering (Academic, 1976), Vol. 33.
  28. Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
    [Crossref]
  29. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
    [Crossref]
  30. A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
    [Crossref]
  31. A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
    [Crossref]
  32. W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).
    [Crossref]

2017 (3)

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
[Crossref]

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

2015 (3)

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
[Crossref]

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C 119, 13893–13900 (2015).
[Crossref]

2014 (3)

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

K. Sasikumar and P. Keblinski, “Molecular dynamics investigation of nanoscale cavitation dynamics,” J. Chem. Phys. 141, 234508 (2014).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
[Crossref]

2013 (2)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
[Crossref]

2012 (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

2011 (1)

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

2010 (2)

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2010).
[Crossref]

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

2009 (2)

D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomedicine 4, 813–845 (2009).
[Crossref]

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

2008 (2)

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[Crossref]

2007 (1)

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

2005 (1)

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[Crossref]

2004 (2)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

2002 (1)

W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).
[Crossref]

1999 (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[Crossref]

1996 (2)

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
[Crossref]

B. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286–3296 (1996).
[Crossref]

1990 (1)

A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
[Crossref]

1988 (1)

A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
[Crossref]

Adler, D. C.

Baffou, G.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

Bailey, M. R.

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

Biben, T.

J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Boulais, E.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Boutopoulos, C.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Broschat, S. L.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
[Crossref]

Commander, K. W.

A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
[Crossref]

Crum, L. A.

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
[Crossref]

Csaki, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Dagallier, A.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Dahmen, C.

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Delfour, L.

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C 119, 13893–13900 (2015).
[Crossref]

Evans, W.

Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
[Crossref]

Fales, A. M.

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

Fedoruk, M.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Feldmann, J.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Ferrell, R. A.

A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
[Crossref]

Festag, G.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Fritzsche, W.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Fujimoto, J. G.

Garwe, F.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Goodman, F.

F. Goodman and H. Wachman, Dynamics of Gas-Surface Scattering (Academic, 1976), Vol. 33.

Grésillon, S.

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Hafner, J.

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

Hanna, E.

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

Hao, H.

A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
[Crossref]

Hashimoto, S.

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2010).
[Crossref]

Hastings, F. D.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Heindl, D.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Horton, M.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Hrelescu, C.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Huang, S.-W.

Huber, R.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Ilev, I. K.

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

Itina, T. E.

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C 119, 13893–13900 (2015).
[Crossref]

Johnson, B.

Keblinski, P.

K. Sasikumar and P. Keblinski, “Molecular dynamics investigation of nanoscale cavitation dynamics,” J. Chem. Phys. 141, 234508 (2014).
[Crossref]

Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
[Crossref]

Klar, T. A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[Crossref]

König, K.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Kotaidis, V.

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[Crossref]

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Kreider, W.

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

Ku, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[Crossref]

Kürzinger, K.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Lachaine, R.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Langbein, U.

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

Lapotko, D.

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomedicine 4, 813–845 (2009).
[Crossref]

Liang, Z.

Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
[Crossref]

Lombard, J.

J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
[Crossref]

Lukianova-Hleb, E.

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

Maubach, G.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Mensah, S.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

Merabia, S.

J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
[Crossref]

Metwally, K.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

Meunier, M.

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Nichtl, A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

O’Neal, D. P.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Onuki, A.

A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
[Crossref]

Parak, W. J.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Pfefer, J.

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

Plech, A.

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[Crossref]

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Prosperetti, A.

A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
[Crossref]

Pruß, A.

W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

Radler, J.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Raschke, G.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Riemann, I.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Sapozhnikov, O. A.

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

Sasikumar, K.

K. Sasikumar and P. Keblinski, “Molecular dynamics investigation of nanoscale cavitation dynamics,” J. Chem. Phys. 141, 234508 (2014).
[Crossref]

Schneider, J. B.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
[Crossref]

Setoura, K.

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

Sperling, R. A.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Stefani, F.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Stehr, J.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Steinbrück, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Stoica, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Strasser, M.

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[Crossref]

Urban, A.

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

Uwada, T.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

Vogt, W. C.

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

Von Plessen, G.

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Wachman, H.

F. Goodman and H. Wachman, Dynamics of Gas-Surface Scattering (Academic, 1976), Vol. 33.

Wagner, W.

W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).
[Crossref]

Wang, L. V.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Wang, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Weise, A.

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Werner, D.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2010).
[Crossref]

Wunderlich, M.

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

Xie, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Kotaidis and A. Plech, “Cavitation dynamics on the nanoscale,” Appl. Phys. Lett. 87, 213102 (2005).
[Crossref]

J. Acoust. Soc. Am. (3)

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 3511–3530 (2011).
[Crossref]

A. Prosperetti, L. A. Crum, and K. W. Commander, “Nonlinear bubble dynamics,” J. Acoust. Soc. Am. 83, 502–514 (1988).
[Crossref]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation,” J. Acoust. Soc. Am. 100, 3061–3069 (1996).
[Crossref]

J. Chem. Phys. (1)

K. Sasikumar and P. Keblinski, “Molecular dynamics investigation of nanoscale cavitation dynamics,” J. Chem. Phys. 141, 234508 (2014).
[Crossref]

J. Photochem. Photobiol. C (1)

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C 13, 28–54 (2012).
[Crossref]

J. Phys. Chem. B (1)

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[Crossref]

J. Phys. Chem. C (5)

J. Lombard, T. Biben, and S. Merabia, “Threshold for vapor nanobubble generation around plasmonic nanoparticles,” J. Phys. Chem. C 121, 15402–15415 (2017).
[Crossref]

L. Delfour and T. E. Itina, “Mechanisms of ultrashort laser-induced fragmentation of metal nanoparticles in liquids: numerical insights,” J. Phys. Chem. C 119, 13893–13900 (2015).
[Crossref]

M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, “Computational modeling of pulsed laser-induced heating and evaporation of gold nanoparticles,” J. Phys. Chem. C 118, 25748–25755 (2014).
[Crossref]

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength-and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115, 5063–5072 (2010).
[Crossref]

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (1)

W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).
[Crossref]

Laser Photon. Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

Nano Lett. (4)

A. Urban, M. Fedoruk, M. Horton, J. Radler, F. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,” Nano Lett. 9, 2903–2908 (2009).
[Crossref]

J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W. J. Parak, T. A. Klar, and J. Feldmann, “Gold nanostoves for microsecond DNA melting analysis,” Nano Lett. 8, 619–623 (2008).
[Crossref]

A. Csaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. König, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[Crossref]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689–1692 (2004).
[Crossref]

Nanomedicine (1)

D. Lapotko, “Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications,” Nanomedicine 4, 813–845 (2009).
[Crossref]

Nanoscale (1)

A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, and M. Meunier, “Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles,” Nanoscale 9, 3023–3032 (2017).
[Crossref]

Nanotechnology (1)

E. Lukianova-Hleb, E. Hanna, J. Hafner, and D. Lapotko, “Tunable plasmonic nanobubbles for cell theranostics,” Nanotechnology 21, 085102 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

A. Onuki, H. Hao, and R. A. Ferrell, “Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point,” Phys. Rev. A 41, 2256–2259 (1990).
[Crossref]

Phys. Rev. B (1)

A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen, and G. Von Plessen, “Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
[Crossref]

Phys. Rev. E (2)

Z. Liang, W. Evans, and P. Keblinski, “Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces,” Phys. Rev. E 87, 022119 (2013).
[Crossref]

J. Lombard, T. Biben, and S. Merabia, “Nanobubbles around plasmonic nanoparticles: thermodynamic analysis,” Phys. Rev. E 91, 043007 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. Lombard, T. Biben, and S. Merabia, “Kinetics of nanobubble generation around overheated nanoparticles,” Phys. Rev. Lett. 112, 105701 (2014).
[Crossref]

Sci. Rep. (1)

A. M. Fales, W. C. Vogt, J. Pfefer, and I. K. Ilev, “Quantitative evaluation of nanosecond pulsed laser-induced photomodification of plasmonic gold nanoparticles,” Sci. Rep. 7, 15704 (2017).
[Crossref]

Other (3)

F. Goodman and H. Wachman, Dynamics of Gas-Surface Scattering (Academic, 1976), Vol. 33.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Temperature of the surrounding medium of the 80 nm NP as a function of distance from the NP and time. The columns from left to right relate to the laser fluences of 80, 150, and $ 500\,\,{{\rm Jm}^{ - 2}} $, respectively, and rows from top to bottom correspond to pulse widths of 1, 5, and 10 ns, respectively.
Fig. 2.
Fig. 2. Temperature variations of the 80 nm NP under laser fluences of (a) $ 80\,\,{{\rm Jm}^{ - 2}} $, (b) $ 150\,\,{{\rm Jm}^{ - 2}} $, and (c) $ 500\,\,{{\rm Jm}^{ - 2}} $, calculated at three different pulse widths as a function of time. Red, blue, and green curves relate to pulse widths of 1, 5, and 10 ns, respectively.
Fig. 3.
Fig. 3. Absorption cross section of the 80 nm NP under laser fluences of 80, 150, 500, 1500, and $ 3000\,\,{{\rm Jm}^{ - 2}} $, calculated at 1 ns pulse width as a function of time.
Fig. 4.
Fig. 4. (a) Pressure, (b) wall velocity, and (c) density of the bubble that surrounds the 80 nm NP is calculated at three different fluences; excitation is done by a 1 ns laser pulse. Red, blue, and green curves correspond to fluences of 80, 150, and $ 500\,\,{{\rm Jm}^{ - 2}} $, respectively.
Fig. 5.
Fig. 5. (a) 80 nm NP size reduction under successive laser pulses with fluence of $ 1000\,\,{{\rm Jm}^{ - 2}} $, calculated at three different pulse widths. Red, blue, and green curves relate to pulse widths of 1, 5, and 10 ns, respectively. (b) 20 nm NP temperature as a function of time under 5 ns laser pulse width and at different fluences.
Fig. 6.
Fig. 6. (a) Required fluence for complete melt of 40, 60, and 80 nm NPs under 5 ns pulse width as a function of $ \gamma $ coefficient. (b) Thermal conductance at the NP–bubble interface as a function of time, when 40, 60, and 80 nm NPs are irradiated by 1 ns pulse width and laser fluence of $ 500\,\,{{\rm Jm}^{ - 2}} $.

Tables (4)

Tables Icon

Table 1. Temperature and Pressure at the Moment of Bubble Formation for 80 nm NP under Conditions Mentioned in Fig. 1

Tables Icon

Table 2. Nanoparticle Parameters Used for Simulation of Laser–NP Interaction

Tables Icon

Table 3. Water Parameters Used for Simulation of Laser–NP Interaction

Tables Icon

Table 4. Parameters Used for Simulation of Laser–NP Interaction

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = 2 F ln 2 π τ exp 4 ln 2 t 2 τ 2 ,
ρ n p c n p T n p t = Q t ,
ρ w c w T w t = . k w T w ,
Q ( t ) = C a b s I t V n p ,
R b d 2 R b d t 2 + 3 2 d R b d t 2 = P w a l l P ρ ,
Δ E b = Q m a s s + Q n p + Q w o r k + Q t e n + Q v i s + Q i n t e r ,
Δ T b = Δ E b m b c b ,
G n p b = 3 2 γ 2 γ ρ b 2 N A 3 K B 3 T b M 3 ,
γ = T r T i T n p T i ,
Δ H e v a p d n M 4 π R b 2 + ( k b T r ) i n b u b b l e = ( k w T r ) i n w a t e r ,
T b . p = T a t m L n p L n p T a t m R c o n s ln P b P a t m ,
m e v a = Q ( t ) 4 π R n p 2 G n p b T n p T b L n p .
C s c a = 2 π k w v 2 2 i + 1 | a i | 2 + | b i | 2 ,
C e x t = 2 π k w v 2 2 i + 1 R e a i + b i ,
C a b s = C e x t C s c a ,

Metrics