Abstract

This paper describes the enhanced performance of the microcrystalline silicon (µc-Si) thin-film solar cells due to the incorporation of plasmonic nanostructures. Finite-difference time-domain numerical modeling is used to calculate the optical properties of the solar cells such as the absorption and the short-circuit current density (${J_{\rm sc}}$). In this paper, two-dimensional(2D) periodic arrays of various geometries of plasmonic nanostructures such as nano-rings, nano-discs, nano-hemispheres, and nano-cubes are employed on the back side of the solar cells to increase the absorption for the longer wavelengths of the incident light, where most of the photons remain unharvested due to extremely low absorption coefficients of µc-Si material. These plasmonic nanostructures are compared in terms of solar cell performance, and it is found that the 2D periodic arrays of nano-rings show significant absorption enhancement at multiple wavelengths, thereby leading to a substantial enhancement in the ${J_{\rm sc}}$. An enhancement of 35% in the ${J_{\rm sc}}$ is obtained when a 2D periodic array of plasmonic nano-rings is present on the back side of the solar cell, which is higher than that of the µc-Si solar cells having arrays of plasmonic nanostructures of other geometries (i.e., nano-discs, nano-cubes, nano-hemispheres). It is observed that the enhancement in the absorption is attributed to the enhanced electromagnetic fields in the active layer due to several localized surface plasmon modes that are excited in the plasmonic nanostructures at different wavelengths. Moreover, the effect of the thickness of the spacer layer (the layer between the metal back-reflector and plasmonic nanostructure arrays) on the performance of different plasmonic solar cells is examined.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of nanostructured plasmonic back contacts for thin-film silicon solar cells

Ulrich W. Paetzold, Etienne Moulin, Bart E. Pieters, Reinhard Carius, and Uwe Rau
Opt. Express 19(S6) A1219-A1230 (2011)

Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures

Hung-Yu Lin, Yang Kuo, Cheng-Yuan Liao, C. C. Yang, and Yean-Woei Kiang
Opt. Express 20(S1) A104-A118 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Shimura, Semiconductor Silicon Crystal Technology (Academic, 1989).
  2. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012).
  3. C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
    [Crossref]
  4. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
    [Crossref]
  5. Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
    [Crossref]
  6. M. J. De Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Sol. Energy Mater. Solar Cells 119, 296–305 (2013).
    [Crossref]
  7. M. A. Green, “Crystalline silicon photovoltaic cells,” Adv. Mater. 13, 1019–1022 (2001).
    [Crossref]
  8. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
    [Crossref]
  9. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
    [Crossref]
  10. M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge,” Sol. Energy Mater. Solar Cells 78, 543–566 (2003).
    [Crossref]
  11. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
    [Crossref]
  12. O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
    [Crossref]
  13. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
    [Crossref]
  14. M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
    [Crossref]
  15. M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
    [Crossref]
  16. J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.
  17. O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
    [Crossref]
  18. A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
    [Crossref]
  19. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  20. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
    [Crossref]
  21. J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
    [Crossref]
  22. L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
    [Crossref]
  23. J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Opt. Express 23, A92 (2015).
    [Crossref]
  24. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific Publishing Co., 2010), pp. 3–11.
  25. W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
    [Crossref]
  26. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
    [Crossref]
  27. A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
    [Crossref]
  28. H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
    [Crossref]
  29. S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
    [Crossref]
  30. M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
    [Crossref]
  31. K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
    [Crossref]
  32. A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
    [Crossref]
  33. Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
    [Crossref]
  34. A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7, 1755–1762 (2013).
    [Crossref]
  35. C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
    [Crossref]
  36. B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84, 1544–1547 (2007).
    [Crossref]
  37. Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
    [Crossref]
  38. X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
    [Crossref]
  39. R. J. Moerland and J. P. Hoogenboom, “Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors,” Optica 3, 112 (2016).
    [Crossref]
  40. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  41. R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
    [Crossref]
  42. H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
    [Crossref]
  43. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
    [Crossref]
  44. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
  45. P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
    [Crossref]
  46. J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
    [Crossref]
  47. J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
    [Crossref]
  48. J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
    [Crossref]
  49. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref]
  50. Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
    [Crossref]
  51. C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express 21, A363–A371 (2013).
    [Crossref]

2019 (1)

X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
[Crossref]

2018 (2)

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

2017 (3)

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

2016 (9)

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
[Crossref]

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

R. J. Moerland and J. P. Hoogenboom, “Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors,” Optica 3, 112 (2016).
[Crossref]

J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
[Crossref]

Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
[Crossref]

2015 (3)

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P. M. Fauchet, “Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both,” Opt. Express 23, A92 (2015).
[Crossref]

2014 (3)

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

2013 (8)

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7, 1755–1762 (2013).
[Crossref]

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

M. J. De Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Sol. Energy Mater. Solar Cells 119, 296–305 (2013).
[Crossref]

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express 21, A363–A371 (2013).
[Crossref]

2012 (2)

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

2011 (1)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

2010 (1)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[Crossref]

2009 (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

2007 (1)

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84, 1544–1547 (2007).
[Crossref]

2004 (1)

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

2003 (2)

M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge,” Sol. Energy Mater. Solar Cells 78, 543–566 (2003).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

2001 (2)

M. A. Green, “Crystalline silicon photovoltaic cells,” Adv. Mater. 13, 1019–1022 (2001).
[Crossref]

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

2000 (3)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

1999 (1)

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

Águas, H.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Alabastri, A.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Araújo, A.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific Publishing Co., 2010), pp. 3–11.

Ballif, C.

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Battaglia, C.

C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
[Crossref]

Batteas, J. D.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Bauer, C.

Beck, F. J.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Becker, C.

J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
[Crossref]

Bergstrom, P. L.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Biron, R.

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

Bohloul, A.

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

Borghs, G.

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Bozzola, A.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Bucher, C.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Bugnon, G.

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Cai, Y.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

Carius, R.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Chang, W. S.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Chen, J. D.

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Chen, Y.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Cho, J. S.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Choi, H.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Choi, M.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Colvin, V. L.

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

Corn, R. M.

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7, 1755–1762 (2013).
[Crossref]

Costa, J.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

Cremer, P. S.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

Crupi, I.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Cuevas, A.

C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
[Crossref]

Cui, B.

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84, 1544–1547 (2007).
[Crossref]

Cui, C.

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Cui, Y.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Dasgupta, A.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

De Angelis, F.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

De Wild-Scholten, M. J.

M. J. De Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Sol. Energy Mater. Solar Cells 119, 296–305 (2013).
[Crossref]

De Wolf, S.

C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
[Crossref]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Despeisse, M.

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Di Vece, M.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Dorpe, P. V.

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Dubail, S.

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Durose, K.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Fan, C.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Fan, S.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

Fauchet, P. M.

Faÿ, S.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Fejfar, A.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Ferreira, I.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Finger, F.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Fischer, D.

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Fluckiger, R.

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Fortunato, E.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Ganzerová, K.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

Ge, H.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Giessen, H.

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

M. A. Green, “Crystalline silicon photovoltaic cells,” Adv. Mater. 13, 1019–1022 (2001).
[Crossref]

Gu, M.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

Güney, D.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Gwamuri, J.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Ha, K.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

Halpern, A. R.

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7, 1755–1762 (2013).
[Crossref]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Haug, F. J.

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Holovský, J.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

Hoogenboom, J. P.

Houben, L.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Hungerford, C.

Hutchings, K.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Irvine, S. J. C.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Isabella, O.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

Jang, E.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Jang, M. S.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Jang, S.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Jia, B.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

Keppner, H.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Kluth, O.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Kocka, J.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Kondo, M.

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge,” Sol. Energy Mater. Solar Cells 78, 543–566 (2003).
[Crossref]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Kroll, U.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Lagae, L.

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Lamb, D. A.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Lambertz, A.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Lane, D.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Ledinský, M.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

Lee, J. K.

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Lewicka, Z. A.

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

Li, C.

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Li, Y.

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

Li, Y. Q.

Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
[Crossref]

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Light, K.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Link, S.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Liu, L.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Liu, W.

X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
[Crossref]

Liu, X.

X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
[Crossref]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Lyubchyk, A.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Maes, G.

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Martins, R.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Mateus, T.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Matsubara, K.

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

Mayandi, J.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Meier, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Mendes, M. J.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Miele, E.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Mizuno, H.

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

Moerland, R. J.

Morawiec, S.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Moriarty, T.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Mück, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Müller, M.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

Nakajima, A.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

Neamen, D. A.

D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012).

Negrito, M.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Niu, X.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

Nordlander, P.

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

Nunes, D.

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

Okamoto, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

Ou, Q. D.

Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
[Crossref]

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Panaro, S.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Pearce, J. M.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

Polman, A.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific Publishing Co., 2010), pp. 3–11.

Poruba, A.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Pravitasari, A.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Priolo, F.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Probst, J.

J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

Raja, W.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Rech, B.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Remeš, Z.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Rogach, A. L.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

Rothberg, L. J.

Saga, T.

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[Crossref]

Sai, H.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

Santbergen, R.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

Schropp, R. E. I.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Schüttauf, J. W.

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Shah, A.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

Sheldon, M.

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

Shimura, F.

F. Shimura, Semiconductor Silicon Crystal Technology (Academic, 1989).

Shome, K.

Sivec, L.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Smets, A. H. M.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

Spitznagel, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Špringer, J.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Stokes, N.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

Stuckelberger, M.

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

Takato, H.

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

Tan, H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

Tang, J. X.

Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
[Crossref]

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Tawada, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

Toma, A.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Torres, P.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

Treharne, R. E.

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Tscharner, R.

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

Van De Groep, J.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Van Dijk, L.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Vanecek, M.

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

Veldhuizen, L. W.

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Veres, T.

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84, 1544–1547 (2007).
[Crossref]

Vetterl, O.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Vetushka, A.

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

Vora, A.

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

Wagner, H.

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Wang, H.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Wang, X.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Wang, Z.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Winans, J. D.

Wu, J.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

Wyrsch, N.

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

Xavier, J.

J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
[Crossref]

Yamamoto, K.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

Yan, B.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Yang, B.

X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
[Crossref]

Yang, G.

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

Yao, Y.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

Ye, J.

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Yoshimi, M.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

Yu, P.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

Yu, W. W.

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

Yuan, C.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Zaccaria, R. P.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

Zeman, M.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

Zhan, P.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Zhang, J.

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Zhou, L.

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Zilio, P.

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

ACS Nano (2)

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7, 1755–1762 (2013).
[Crossref]

P. Nordlander, “The ring: a leitmotif in plasmonics,” ACS Nano 3, 488–492 (2009).
[Crossref]

ACS Photon. (1)

L. Van Dijk, J. Van De Groep, L. W. Veldhuizen, M. Di Vece, A. Polman, and R. E. I. Schropp, “Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells,” ACS Photon. 3, 685–691 (2016).
[Crossref]

Adv. Mater. (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

M. A. Green, “Crystalline silicon photovoltaic cells,” Adv. Mater. 13, 1019–1022 (2001).
[Crossref]

J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27, 1035–1041 (2015).
[Crossref]

Adv. Sci. (1)

Q. D. Ou, Y. Q. Li, and J. X. Tang, “Light manipulation in organic photovoltaics,” Adv. Sci. 3, 1600123 (2016).
[Crossref]

Appl. Phys. Express (1)

H. Mizuno, H. Sai, K. Matsubara, H. Takato, and M. Kondo, “Transfer-printed silver nanodisks for plasmonic light trapping in hydrogenated microcrystalline silicon solar cells,” Appl. Phys. Express 7, 112302 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Energy Environ. Sci. (1)

C. Battaglia, A. Cuevas, and S. De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy Environ. Sci. 9, 1552–1576 (2016).
[Crossref]

IEEE J. Photovolt. (1)

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3, 53–58 (2013).
[Crossref]

J. Appl. Phys. (3)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109, 073105 (2011).
[Crossref]

M. Stuckelberger, M. Despeisse, G. Bugnon, J. W. Schüttauf, F. J. Haug, and C. Ballif, “Comparison of amorphous silicon absorber materials: light-induced degradation and solar cell efficiency,” J. Appl. Phys. 114, 154509 (2013).
[Crossref]

A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys. 88, 148–160 (2000).
[Crossref]

J. Mater. Chem. C (1)

X. Liu, W. Liu, and B. Yang, “Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing,” J. Mater. Chem. C 7, 7681–7691 (2019).
[Crossref]

J. Micro/Nanolithography, MEMS, MOEMS (1)

C. Fan, X. Wang, L. Liu, J. Zhang, Y. Cui, P. Zhan, C. Yuan, H. Ge, Z. Wang, and Y. Chen, “Wafer-scale fabrication of metal nanoring and nanocrescent arrays from nanoimprinted nanopillar arrays,” J. Micro/Nanolithography, MEMS, MOEMS 16, 033501 (2017).
[Crossref]

J. Non-Cryst. Solids (1)

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, and A. Nakajima, “Thin film Si solar cell fabricated at low temperature,” J. Non-Cryst. Solids 266, 1082–1087 (2000).
[Crossref]

J. Phys. Chem. B (1)

A. Pravitasari, M. Negrito, K. Light, W. S. Chang, S. Link, M. Sheldon, and J. D. Batteas, “Using particle lithography to tailor the architecture of au nanoparticle plasmonic nanoring arrays,” J. Phys. Chem. B 122, 730–736 (2018).
[Crossref]

J. Phys. D. Appl. Phys. (1)

R. E. Treharne, K. Hutchings, D. A. Lamb, S. J. C. Irvine, D. Lane, and K. Durose, “Combinatorial optimization of Al-doped ZnO films for thin-film photovoltaics,” J. Phys. D. Appl. Phys. 45, 335102 (2012).
[Crossref]

Microelectron. Eng. (1)

B. Cui and T. Veres, “Fabrication of metal nanoring array by nanoimprint lithography (NIL) and reactive ion etching,” Microelectron. Eng. 84, 1544–1547 (2007).
[Crossref]

Nano Lett. (1)

Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, “Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances,” Nano Lett. 12, 4881–4888 (2012).
[Crossref]

Nanotechnology (4)

J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20, 465203 (2009).
[Crossref]

Z. A. Lewicka, Y. Li, A. Bohloul, W. W. Yu, and V. L. Colvin, “Nanorings and nanocrescents formed via shaped nanosphere lithography: a route toward large areas of infrared metamaterials,” Nanotechnology 24, 115303 (2013).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nanocolloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

K. Ha, E. Jang, S. Jang, J. K. Lee, M. S. Jang, H. Choi, J. S. Cho, and M. Choi, “A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures,” Nanotechnology 27, 055403 (2016).
[Crossref]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

NPG Asia Mater (1)

T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater. 2, 96–102 (2010).
[Crossref]

Opt. Express (2)

Optica (1)

Prog. Photovolt. Res. Appl. (1)

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 671–689 (2014).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. Stuckelberger, R. Biron, N. Wyrsch, F. J. Haug, and C. Ballif, “Review: progress in solar cells from hydrogenated amorphous silicon,” Renew. Sustain. Energy Rev. 76, 1497–1523 (2017).
[Crossref]

Sci. Rep. (5)

Y. Zhang, N. Stokes, B. Jia, S. Fan, and M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss,” Sci. Rep. 4, 4939 (2014).
[Crossref]

S. Morawiec, J. Holovský, M. J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi, “Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application,” Sci. Rep. 6, 22481 (2016).
[Crossref]

W. Raja, A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. P. Zaccaria, “Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells,” Sci. Rep. 6, 24539 (2016).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, 7696 (2017).
[Crossref]

J. Xavier, J. Probst, and C. Becker, “Deterministic composite nanophotonic lattices in large area for broadband applications,” Sci. Rep. 6, 38744 (2016).
[Crossref]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).

A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: the case for thin-film solar cells,” Science 285, 692–698 (1999).
[Crossref]

Sol. Energy (1)

A. Araújo, M. J. Mendes, T. Mateus, J. Costa, D. Nunes, E. Fortunato, H. Águas, and R. Martins, “Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells,” Sol. Energy 174, 786–792 (2018).
[Crossref]

Sol. Energy Mater. Solar Cells (5)

J. Gwamuri, A. Vora, J. Mayandi, D. Güney, P. L. Bergstrom, and J. M. Pearce, “A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices,” Sol. Energy Mater. Solar Cells 149, 250–257 (2016).
[Crossref]

O. Vetterl, A. Lambertz, A. Dasgupta, F. Finger, B. Rech, O. Kluth, and H. Wagner, “Thickness dependence of microcrystalline silicon solar cell properties,” Sol. Energy Mater. Solar Cells 66, 345–351 (2001).
[Crossref]

M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge,” Sol. Energy Mater. Solar Cells 78, 543–566 (2003).
[Crossref]

M. J. De Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Sol. Energy Mater. Solar Cells 119, 296–305 (2013).
[Crossref]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Solar Cells 62, 97–108 (2000).
[Crossref]

Thin Solid Films (1)

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451, 518–524 (2004).
[Crossref]

Other (5)

F. Shimura, Semiconductor Silicon Crystal Technology (Academic, 1989).

D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2012).

J. Meier, S. Dubail, R. Fluckiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic microcrystalline silicon (µc-Si:H)—a promising new thin film solar cell material,” in Conference Record of the IEEE Photovoltaic Specialists Conference (IEEE, 1994), Vol. 1, pp. 409–412.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific Publishing Co., 2010), pp. 3–11.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Real part ($n$) and imaginary part ($k$) of the refractive index of µC-Si as a function of wavelength [17]. The inset provides the value of the imaginary part ($k$) of the refractive index in the spectral region from 700  to 1100 nm. These lower values of ${ k}$ lead to a lower absorption of the incident light towards longer wavelengths.
Fig. 2.
Fig. 2. (a) Schematic of a µC-Si solar cell showing the different solar cell layers and the array of plasmonic nanostructures (NS) on the back side of the solar cell. Enlarged views of the arrays of different plasmonic nanostructures present on the back side of the different microcrystalline solar cells: (b) a two-dimensional periodic array (periodic in the $x \text{-} y$ plane) of Ag nano-rings, (c) a two-dimensional periodic array of Ag nano-discs, (d) a two-dimensional periodic array of Ag nano-hemispheres, and (e) a two-dimensional periodic array of Ag nano-cubes. The volume of all the nanostructures was taken to be constant as ${V}={({150})^3}\;{{\rm nm}^3}$. The radii of the nano-rings (the mean radius of the rings) and nano-discs were changed in order to maximize the ${{J}_{\rm sc}}$ of the solar cells by keeping the volume V constant. The periodicity of the nanostructures was also varied in order to maximize the ${{J}_{\rm sc}}$. In these solar cell configurations, the thicknesses of the Ag, AZO, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 100, 20, 300, 10, and 20 nm, respectively.
Fig. 3.
Fig. 3. Results of FDTD simulations showing the effects of varying the different parameters of the arrays of plasmonic nanostructures on the values of the enhancements in the ${{J}_{\rm sc}}$ (compared to the ${{J}_{\rm sc}}$ of a solar cell having no nanostructures, i.e., the reference solar cell) of the solar cells containing these plasmonic nanostructures (silver nanostructures) on the solar cell’s back side. The periodicity of the nanostructures must be greater than the size of the nanostructure. Therefore, the curves in plot (a) are starting at different periods. For the arrays of plasmonic nanocubes, the edge dimension W was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius $R_h$ was taken to be 117 nm. The volume of the plasmonic nanostructures of all the geometries was taken to be constant as ${V}={({150})^3}\;{{\rm nm}^3}$. In these solar cell configurations, the thicknesses of the Ag, AZO, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 100, 20, 300, 10, and 20 nm, respectively.
Fig. 4.
Fig. 4. Absorption spectra versus wavelength of the solar cells containing various optimized nanostructures. For the arrays of plasmonic nano-rings, the values of ${{R}_r}$ and the periodicity ${P}$ were taken to be 250 nm and 750 nm, respectively. For the arrays of plasmonic nano-discs, the values of ${{R}_d}$ and the periodicity ${P}$ were taken to be 200 nm and 600 nm, respectively. For the arrays of plasmonic nanocubes, the edge dimension W was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius was taken to be 117 nm. For the arrays of plasmonic nano-cubes and of plasmonic nano-hemispheres, the periodicities ${P}$ of the nanostructures in the array were taken to be 650 nm and 600 nm, respectively. In these solar cell configurations, the thicknesses of the Ag, AZO, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 100, 20, 300, 10, and 20 nm, respectively.
Fig. 5.
Fig. 5. Normalized electric field ($| {\boldsymbol E} |/| {{{\boldsymbol E}_0}} |$) distribution for the solar cells containing 2D periodic array of plasmonic nano-rings (a)–(f) in the $x \text{-} z$ plane and (g)–(l) in the $x \text{-} y$ plane. The region between two horizontal white dashed lines represents the active region in plots (a)–(f), and the black dashed lines represent the plasmonic nano-ring structures. Plots (a)–(f) demonstrate the field confinement in the active region of the solar cells due to LSP-based scattering at different wavelengths. The same color scale has been used in all plots. The optimized nano-ring parameters (optimized values of periods and radii of the nano-ring) have been used for these plots. For the arrays of plasmonic nano-rings, the values of ${{ R}_r}$ and the periodicity ${ P}$ were taken to be 250 nm and 750 nm, respectively. For the arrays of plasmonic nano-discs, the values of ${{ R}_d}$ and the periodicity ${P}$ were taken to be 200 nm and 600 nm, respectively. For the arrays of plasmonic nanocubes, the edge dimension W was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius was taken to be 117 nm. For the arrays of plasmonic nano-cubes and of plasmonic nano-hemispheres, the periodicities ${ P}$ of the nanostructures in the array were taken to be 650 nm and 600 nm, respectively. In these solar cell configurations, the thicknesses of the Ag, AZO, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 100, 20, 300, 10, and 20 nm, respectively.
Fig. 6.
Fig. 6. (a) Scattering cross section and (b) absorption cross section for various optimized nanostructures of the same volume. The nanostructures were placed on top of an AZO layer and surrounded by µc-Si, similar to the proposed solar cell structure (as shown in the inset). While calculating the cross sections, the refractive indices of the µc-Si and AZO were taken as 3.8 and 1.7, respectively. Note that, for other solar cell simulations, the dispersive refractive indices for all materials were taken into account. The radii of plasmonic nano-ring and nano-disc were taken to be 250 nm and 200 nm, respectively. For the arrays of plasmonic nanocubes, the edge dimension ${W}$ was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius was taken to be 117 nm. In these solar cell configurations, the thicknesses of the Ag, AZO, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 100, 20, 300, 10, and 20 nm, respectively.
Fig. 7.
Fig. 7. (a) ${{ J}_{\rm sc}}$ (in ${\rm mA}/{{\rm cm}^2}$) of the solar cells containing 2D arrays of various plasmonic nanostructures and (b) ${{J}_{\rm sc}}$ enhancement (in %) due to these nanostructure arrays as a function of the thickness of the AZO spacer layer ${t}$. The optimized nanostructures’ parameters (optimized values of periods and radii of the nanostructures) have been used for these plots. For the arrays of plasmonic nano-rings, the values of ${{R}_r}$ and the periodicity ${ P}$ were taken to be 250 nm and 750 nm, respectively. For the arrays of plasmonic nano-discs, the values of ${{R}_d}$ and the periodicity ${ P}$ were taken to be 200 nm and 600 nm, respectively. For the arrays of plasmonic nanocubes, the edge dimension ${W}$ was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius was taken to be 117 nm. For the arrays of plasmonic nano-cubes and of plasmonic nano-hemispheres, the periodicities P of the nanostructures in the array were taken to be 650 nm and 600 nm, respectively. In these solar cell configurations, the thicknesses of the Ag, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 20, 300, 10, and 20 nm, respectively, while the thickness of the AZO spacer layer was varied.
Fig. 8.
Fig. 8. Absorption spectra of the solar cells containing 2D arrays of various plasmonic nanostructures for different values of AZO spacer layer thickness ${t}$: (a) planar solar cell, i.e., reference solar cell with an AZO layer of 100 nm thickness, (b) solar cell containing nano-ring arrays with an AZO layer of 60 nm thickness, (c) solar cell containing nano-disc arrays with an AZO layer of 100 nm thickness, (d) solar cell containing nano-hemisphere arrays with an AZO layer of 120 nmthickness, and (e) solar cell containing nano-cube arrays with an AZO layer of 80 nm thickness. Optimized nanostructure parameters (optimized values of periods and radii of the nanostructures) have been used for these plots. For the arrays of plasmonic nano-rings, the values of ${{R}_r}$ and the periodicity ${P}$ were taken to be 250 nm and 750 nm, respectively. For the arrays of plasmonic nano-discs, the values of ${{R}_d}$ and the periodicity ${P}$ were taken to be 200 nm and 600 nm, respectively. For the arrays of plasmonic nanocubes, the edge dimension W was taken to be 150 nm. For the arrays of plasmonic nano-hemispheres, the radius was taken to be 117 nm. For the arrays of plasmonic nano-cubes and of plasmonic nano-hemispheres, the periodicities ${P}$ of the nanostructures in the array were taken to be 650 nm and 600 nm, respectively. In these solar cell configurations, the thicknesses of the Ag, $n$-µc-Si, $i$-µc-Si, $p$-µc-Si, and ITO layers were taken to be 100, 20, 300, 10, and 20 nm, respectively.

Tables (1)

Tables Icon

Table 1. J s c and J s c Enhancement for Microcrystalline Silicon Solar Cells Containing Various Plasmonic Nanostructures Arrays

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P a b s ( λ ) = 1 2 ω ε 0 | E ( x , y , z ) | 2 ε ( λ ) d V ,
A ( λ ) = P a b s ( λ ) P i n ( λ ) ,
J s c = e A ( λ ) S ( λ ) h c λ d λ .