Abstract

In order to solve the problems of low sensitivity for traditional interference fiber-optic gyroscopes at low velocity and the existence of measurement dead zone for slow-light gyro, a composite fiber-optic gyroscope that consists of a Sagnac loop and a resonant loop is proposed in this paper. Since it combines the characteristics of the two gyroscopes, the composite gyro can meet the requirements of high sensitivity at low rotation velocity and no measurement dead zone. Loss has a significant influence on the sensitivity of the gyroscope, while the transmission coefficient also has a certain influence on it. The relative sensitivity in the low-velocity and high-velocity regions can be flexibly adjusted by tuning the length ratio of the Sagnac loop and the resonant loop to meet the practical application requirements. The proposed composite gyroscope can provide potential applications in high precision, miniaturization, and integration of the fiber-optic gyroscope.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-beating resonant optical gyroscope with a “reflector”: the possibility of high sensitivities at reduced costs

Sumukh Nandan R, Saroj Poudyal, Shailesh Srivastava, and R. Gowrishankar
Appl. Opt. 58(7) 1699-1706 (2019)

Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide

Christopher Sorrentino, John R. E. Toland, and Christopher P. Search
Opt. Express 20(1) 354-363 (2012)

Fiber-optic gyroscopes: from design to production [Invited]

Jagannath Nayak
Appl. Opt. 50(25) E152-E161 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. Vali and R. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15, 1099–1100 (1976).
    [Crossref]
  2. M. Bielas and W. Taylor, “Progress in interferometric fiber optic gyroscopes for space inertial reference units,” Proc. SPIE 2070, 132–141 (1994).
    [Crossref]
  3. N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
    [Crossref]
  4. A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.
  5. H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, A20–A27 (1997).
    [Crossref]
  6. U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Lett. A. 62, 055801 (2000).
    [Crossref]
  7. F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 1–4 (2003).
    [Crossref]
  8. M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
    [Crossref]
  9. M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
    [Crossref]
  10. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
    [Crossref]
  11. M. Terrel, M. Digonnet, and S. Fan, “Performance limitation of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009).
    [Crossref]
  12. C. Sorrentino, J. Toland, and C. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354–363 (2012).
    [Crossref]
  13. R. Novitski, B. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Lett. A 85, 023813 (2012).
    [Crossref]
  14. D. Kalantarov and C. Search, “Effect of input-output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30, 377–381 (2013).
    [Crossref]
  15. F. Florio, D. Kalantarov, and C. Search, “Effect of static disorder on sensitivity of coupled resonator optical waveguide gyroscopes,” J. Lightwave Technol. 32, 4020–4028 (2014).
    [Crossref]
  16. D. Kalantarov and C. Search, “Effect of resonator losses on the sensitivity of coupled resonator optical waveguide gyroscopes,” Opt. Lett. 39, 985–988 (2014).
    [Crossref]
  17. R. Novitski, B. Steinberg, and J. Scheuer, “Finite-difference time-domain study of modulated and disordered coupled resonator optical waveguide rotation sensors,” Opt. Express 22, 23153–23163 (2014).
    [Crossref]
  18. K. Aghaie and M. Digonnet, “Sensitivity limit of a coupled-resonator optical waveguide gyroscope with separate input/output coupling,” J. Opt. Soc. Am. B 32, 339–344 (2015).
    [Crossref]
  19. K. Aghaie and M. Digonnet, “Effect of periodic modulation of the coupling ratios on the sensitivity of a CROW gyroscope,” J. Opt. Soc. Am. B 32, 1120–1124 (2015).
    [Crossref]
  20. J. Scheuer, “Quantum and thermal noise limits of coupled resonator optical waveguide and resonant waveguide optical rotation sensors,” J. Opt. Soc. Am. B 33, 1827–1834 (2016).
    [Crossref]
  21. A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
    [Crossref]
  22. A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
    [Crossref]
  23. L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
    [Crossref]
  24. S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
    [Crossref]
  25. C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).
    [Crossref]
  26. C. Peng, Z. Li, and A. Xu, “Rotation sensing based on a slow-light resonating structure with high group dispersion,” Appl. Opt. 46, 4125–4131 (2007).
    [Crossref]
  27. Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
    [Crossref]
  28. J. Toland and C. Search, “Sagnac gyroscope using a two-dimensional array of coupled optical microresonators,” Appl. Phys. B 114, 333–339 (2014).
    [Crossref]
  29. Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
    [Crossref]
  30. Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35, 691–693 (2010).
    [Crossref]
  31. H. Tian, Y. Zhang, X. Zhang, H. Wu, and P. Yuan, “Rotation sensing based on a side-coupled spaced sequence of resonators,” Opt. Express 19, 9185–9191 (2011).
    [Crossref]
  32. X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
    [Crossref]
  33. H. Tian and Y. Zhang, “Rotation sensing based on the Sagnac effect in the self-interference add-drop resonator,” J. Lightwave Technol. 36, 1792–1797 (2018).
    [Crossref]
  34. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
    [Crossref]
  35. J. Wang, Y. Zhang, X. Zhang, H. Tian, H. Wu, Y. Cai, J. Zhang, and P. Yuan, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36, 3173–3175 (2011).
    [Crossref]

2018 (1)

2016 (1)

2015 (4)

L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
[Crossref]

Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
[Crossref]

K. Aghaie and M. Digonnet, “Sensitivity limit of a coupled-resonator optical waveguide gyroscope with separate input/output coupling,” J. Opt. Soc. Am. B 32, 339–344 (2015).
[Crossref]

K. Aghaie and M. Digonnet, “Effect of periodic modulation of the coupling ratios on the sensitivity of a CROW gyroscope,” J. Opt. Soc. Am. B 32, 1120–1124 (2015).
[Crossref]

2014 (5)

F. Florio, D. Kalantarov, and C. Search, “Effect of static disorder on sensitivity of coupled resonator optical waveguide gyroscopes,” J. Lightwave Technol. 32, 4020–4028 (2014).
[Crossref]

D. Kalantarov and C. Search, “Effect of resonator losses on the sensitivity of coupled resonator optical waveguide gyroscopes,” Opt. Lett. 39, 985–988 (2014).
[Crossref]

R. Novitski, B. Steinberg, and J. Scheuer, “Finite-difference time-domain study of modulated and disordered coupled resonator optical waveguide rotation sensors,” Opt. Express 22, 23153–23163 (2014).
[Crossref]

J. Toland and C. Search, “Sagnac gyroscope using a two-dimensional array of coupled optical microresonators,” Appl. Phys. B 114, 333–339 (2014).
[Crossref]

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

2013 (2)

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

D. Kalantarov and C. Search, “Effect of input-output coupling on the sensitivity of coupled resonator optical waveguide gyroscopes,” J. Opt. Soc. Am. B 30, 377–381 (2013).
[Crossref]

2012 (2)

C. Sorrentino, J. Toland, and C. Search, “Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide,” Opt. Express 20, 354–363 (2012).
[Crossref]

R. Novitski, B. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Lett. A 85, 023813 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

M. Terrel, M. Digonnet, and S. Fan, “Performance limitation of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[Crossref]

2008 (1)

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

2007 (3)

2006 (1)

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[Crossref]

2005 (1)

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

2004 (2)

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
[Crossref]

2003 (1)

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 1–4 (2003).
[Crossref]

2001 (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

2000 (1)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Lett. A. 62, 055801 (2000).
[Crossref]

1997 (1)

H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, A20–A27 (1997).
[Crossref]

1994 (1)

M. Bielas and W. Taylor, “Progress in interferometric fiber optic gyroscopes for space inertial reference units,” Proc. SPIE 2070, 132–141 (1994).
[Crossref]

1976 (1)

Aghaie, K.

Barbour, N.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

Bielas, M.

M. Bielas and W. Taylor, “Progress in interferometric fiber optic gyroscopes for space inertial reference units,” Proc. SPIE 2070, 132–141 (1994).
[Crossref]

Cai, Y.

Deng, S.

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

Digonnet, M.

Fan, S.

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance limitation of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009).
[Crossref]

Fleischhauer, M.

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 1–4 (2003).
[Crossref]

Florio, F.

F. Florio, D. Kalantarov, and C. Search, “Effect of static disorder on sensitivity of coupled resonator optical waveguide gyroscopes,” J. Lightwave Technol. 32, 4020–4028 (2014).
[Crossref]

Gai, Y.

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

Gopal, V.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Guo, X.

L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
[Crossref]

Hotate, K.

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Huang, A.

L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
[Crossref]

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

Huang, Y.

Ilchenko, V.

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

Kalantarov, D.

Kiarash, Z.

Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
[Crossref]

Kumagai, T.

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Kurokawa, A.

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Lefèvre, H. C.

H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, A20–A27 (1997).
[Crossref]

Leonhardt, U.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Lett. A. 62, 055801 (2000).
[Crossref]

Li, Z.

Liu, X.

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

Maleki, L.

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

Matsko, A.

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

Michel, J.

Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
[Crossref]

Mookherjea, S.

Nakamura, S.

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Novitski, R.

R. Novitski, B. Steinberg, and J. Scheuer, “Finite-difference time-domain study of modulated and disordered coupled resonator optical waveguide rotation sensors,” Opt. Express 22, 23153–23163 (2014).
[Crossref]

R. Novitski, B. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Lett. A 85, 023813 (2012).
[Crossref]

Oono, A.

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Paloczi, G.

Pati, G.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Peng, C.

Piwnicki, P.

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Lett. A. 62, 055801 (2000).
[Crossref]

Poon, J.

Qiu, W.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

Salit, K.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Salit, M.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Savchenkov, A.

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

Scheuer, J.

Schmidt, G.

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

Search, C.

Shahriar, M.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Shorthill, R.

Sorrentino, C.

Steinberg, B.

R. Novitski, B. Steinberg, and J. Scheuer, “Finite-difference time-domain study of modulated and disordered coupled resonator optical waveguide rotation sensors,” Opt. Express 22, 23153–23163 (2014).
[Crossref]

R. Novitski, B. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Lett. A 85, 023813 (2012).
[Crossref]

Taylor, W.

M. Bielas and W. Taylor, “Progress in interferometric fiber optic gyroscopes for space inertial reference units,” Proc. SPIE 2070, 132–141 (1994).
[Crossref]

Terrel, M.

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[Crossref]

M. Terrel, M. Digonnet, and S. Fan, “Performance limitation of a coupled resonant optical waveguide gyroscope,” J. Lightwave Technol. 27, 47–54 (2009).
[Crossref]

Tian, H.

Toland, J.

Tripathi, R.

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

Vali, V.

Vigneronb, P.

Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
[Crossref]

Wang, H.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

Wang, J.

J. Wang, Y. Zhang, X. Zhang, H. Tian, H. Wu, Y. Cai, J. Zhang, and P. Yuan, “Enhancing the sensitivity of fiber Mach-Zehnder interferometers using slow and fast light,” Opt. Lett. 36, 3173–3175 (2011).
[Crossref]

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

Wang, K.

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

Wang, N.

Y. Zhang, H. Tian, X. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35, 691–693 (2010).
[Crossref]

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

Wang, Y.

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

Wu, H.

Xiao, Z.

L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
[Crossref]

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

Xu, A.

Yan, L.

L. Yan, Z. Xiao, X. Guo, and A. Huang, “Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing,” J. Opt. Soc. Am. B 95, 339–344 (2015).
[Crossref]

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

Yariv, A.

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[Crossref]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90–103 (2004).
[Crossref]

Yuan, P.

Zhang, J.

Zhang, X.

Zhang, Y.

Zimmer, F.

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 1–4 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Toland and C. Search, “Sagnac gyroscope using a two-dimensional array of coupled optical microresonators,” Appl. Phys. B 114, 333–339 (2014).
[Crossref]

IEEE Sens. J. (1)

N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (5)

Laser Photon. Rev. (1)

M. Terrel, M. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser Photon. Rev. 3, 452–465 (2009).
[Crossref]

Opt. Commun. (3)

S. Deng, Z. Xiao, L. Yan, and A. Huang, “Optical loss effect on Sagnac sensitivity of circle-coupled resonator structure,” Opt. Commun. 290, 76–79 (2013).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[Crossref]

A. Matsko, A. Savchenkov, V. Ilchenko, and L. Maleki, “Erratum to ‘Optical gyroscope with whispering gallery mode optical cavities’,” Opt. Commun. 259, 393–394 (2005).
[Crossref]

Opt. Eng. (1)

X. Zhang, Y. Zhang, Y. Gai, Y. Wang, X. Liu, and K. Wang, “Performance of a resonator-based interferometric fiber-optic gyroscope under the square wave phase bias modulation,” Opt. Eng. 53, 102711 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Rev. (1)

H. C. Lefèvre, “Fundamentals of the interferometric fiber-optic gyroscope,” Opt. Rev. 4, A20–A27 (1997).
[Crossref]

Phys. Lett. A (3)

M. Shahriar, G. Pati, R. Tripathi, V. Gopal, M. Salit, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Lett. A 75, 053807 (2007).
[Crossref]

R. Novitski, B. Steinberg, and J. Scheuer, “Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor,” Phys. Lett. A 85, 023813 (2012).
[Crossref]

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, and P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[Crossref]

Phys. Lett. A. (1)

U. Leonhardt and P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Lett. A. 62, 055801 (2000).
[Crossref]

Phys. Rev. Lett. (2)

F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultra-slow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 1–4 (2003).
[Crossref]

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[Crossref]

Proc. SPIE (2)

M. Bielas and W. Taylor, “Progress in interferometric fiber optic gyroscopes for space inertial reference units,” Proc. SPIE 2070, 132–141 (1994).
[Crossref]

Z. Kiarash, P. Vigneronb, and J. Michel, “Rotation sensitivity analysis of a two-dimensional array of coupled resonators,” Proc. SPIE 9378, 93781P (2015).
[Crossref]

Other (1)

A. Oono, A. Kurokawa, T. Kumagai, S. Nakamura, and K. Hotate, “Applications and technical progress of fiber optic gyros in Japan,” in 18th International Conference on Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 2006), Vol. 1, paper MA4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagrams of (a) I-FOG and (b) slow-light gyro.
Fig. 2.
Fig. 2. Spectral response of I-FOG (dashed line) and slow-light gyro (solid line) at different rotation velocities.
Fig. 3.
Fig. 3. Schematic diagrams of composite gyro.
Fig. 4.
Fig. 4. Spectral response of the three gyroscopes at rest.
Fig. 5.
Fig. 5. Spectral response of composite gyro at different rotation velocities. (a) $0 {-} 2\pi $ rad/s and (b) ${1}\pi {\rm -} 10\pi $ rad/s.
Fig. 6.
Fig. 6. Light intensity of the three gyroscopes versus angular velocity.
Fig. 7.
Fig. 7. Sensitivities of I-FOG (dashed line) and slow-light gyro (solid line) for different $\alpha $. The inset shows an enlarged view of the dotted box section.
Fig. 8.
Fig. 8. Sensitivities of composite gyro for different $\alpha $. The inset shows an enlarged view of the dotted box section.
Fig. 9.
Fig. 9. Sensitivities of composite gyro for different ${t_2}$.
Fig. 10.
Fig. 10. Sensitivities of composite gyro for different loop length ratios. The inset shows an enlarged view of the dotted box section.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ s = 4 π R L λ c Ω .
T I = i t 1 k 1 ( α e i ϕ s c w + α e i ϕ s c c w ) ,
T S = i t 1 k 1 ( t 2 α e i ϕ r c w 1 α t 2 e i ϕ r c w + t 2 α e i ϕ r c c w 1 α t 2 e i ϕ r c c w ) ,
ϕ q c w = ϕ q + Δ ϕ q = n ω L q c + 2 N q ω A q Ω / c 2 ,
ϕ q c c w = ϕ q Δ ϕ q = n ω L q c 2 N q ω A q Ω / c 2 ,
T C = i t 1 k 1 ( α e i ϕ s c w t 2 α e i ϕ r c w 1 α t 2 e i ϕ r c w + α e i ϕ s c c w t 2 α e i ϕ r c c w 1 α t 2 e i ϕ r c c w ) .
S = 1 P 0 | d P d Ω | ,
S p = d ϕ e f f d ϕ .