Abstract

We investigate and model a picosecond synchronously pumped optical parametric oscillator (OPO) based on an aperiodically poled lithium niobate (APPLN) nonlinear crystal with a chirped quasi-phase matching (QPM) grating. We observe remarkable spectral features with an asymmetric OPO spectrum consisting of a main peak with lower sidelobes. Depending on the sign of the QPM chirp rate, the sidelobes are located either on the red or on the blue side of the main peak. Meanwhile, sidebands develop in the depleted pump spectrum. We attribute these features to cascaded sum-/difference-frequency generation processes, which are quasi-phase matched at different positions in the APPLN crystal. A terahertz-generation cascading effect is also observed and characterized at high pump power.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching

Delphine Descloux, Jean-Baptiste Dherbecourt, Jean-Michel Melkonian, Myriam Raybaut, Jui-Yu Lai, Cyril Drag, and Antoine Godard
Opt. Express 24(10) 11112-11125 (2016)

Quasi-phase-matched self-pumped optical parametric oscillation in a micro-resonator

Simon J. Herr, Christoph S. Werner, Karsten Buse, and Ingo Breunig
Opt. Express 26(8) 10813-10819 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [Crossref]
  2. G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
    [Crossref]
  3. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
    [Crossref]
  4. C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings,” Opt. Express 22, 9627–9658 (2014).
    [Crossref]
  5. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003).
    [Crossref]
  6. D. Artigas and D. T. Reid, “Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals,” Opt. Lett. 27, 851–853 (2002).
    [Crossref]
  7. K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007).
    [Crossref]
  8. T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
    [Crossref]
  9. D. Descloux, J.-B. Dherbecourt, J.-M. Melkonian, M. Raybaut, J.-Y. Lai, C. Drag, and A. Godard, “Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching,” Opt. Express 24, 11112–11125 (2016).
    [Crossref]
  10. D. Descloux, G. Walter, E. Cadiou, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Wide and fast dispersion tuning of a picosecond OPO based on aperiodic quasi-phase matching using an axially chirped volume Bragg grating,” Opt. Lett. 41, 4060–4063 (2016).
    [Crossref]
  11. D. Descloux, C. Laporte, J. B. Dherbecourt, J. M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching,” Opt. Lett. 40, 280–283 (2015).
    [Crossref]
  12. D. Descloux, C. Laporte, J.-B. Dherbecourt, J.-M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching: erratum,” Opt. Lett. 43, 494 (2018).
    [Crossref]
  13. C. Laporte, J.-B. Dherbecourt, J.-M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Analysis of cavity-length detuning in diffraction-grating narrowed picosecond optical parametric oscillators,” J. Opt. Soc. Am. B 31, 1026–1034 (2014).
    [Crossref]
  14. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [Crossref]
  15. G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express 15, 6513–6527 (2007).
    [Crossref]
  16. D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
    [Crossref]
  17. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [Crossref]
  18. O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21, 1623–1632 (2013).
    [Crossref]
  19. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551–1568 (2013).
    [Crossref]
  20. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
    [Crossref]
  21. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008).
    [Crossref]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  23. N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
    [Crossref]
  24. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref]
  25. J. Kiessling, R. Sowade, I. Breunig, K. Buse, and V. Dierolf, “Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals,” Opt. Express 17, 87–91 (2009).
    [Crossref]
  26. T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
    [Crossref]
  27. J. Kiessling, K. Buse, and I. Breunig, “Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5  mol. % MgO-doped LiNbO3 in the terahertz range,” J. Opt. Soc. Am. B 30, 950–952 (2013).
    [Crossref]

2018 (1)

2016 (2)

2015 (1)

2014 (2)

2013 (3)

2012 (2)

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
[Crossref]

2011 (1)

2010 (1)

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

2009 (2)

2008 (3)

2007 (2)

2003 (2)

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003).
[Crossref]

2002 (1)

2001 (1)

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

1998 (1)

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[Crossref]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

Adler, F.

Afeyan, B.

Arie, A.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Arisholm, G.

Artigas, D.

Bache, M.

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Breunig, I.

Buse, K.

Cadiou, E.

Caspani, L.

Cavallari, M.

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[Crossref]

Chang, D.

Charbonneau-Lefort, M.

Clerici, M.

Descloux, D.

Dherbecourt, J. B.

Dherbecourt, J.-B.

Diddams, S. A.

Dierolf, V.

Drag, C.

Fejer, M. M.

Fermann, M. E.

Gale, G. M.

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[Crossref]

Gallmann, L.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Godard, A.

Gorju, G.

Hache, F.

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[Crossref]

Hanna, D. C.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

Hartl, I.

Hellström, J.

Hou, J.

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Keller, U.

Kiessling, J.

Lai, J.-Y.

Langrock, C.

Laporte, C.

Laurell, F.

Li, X.

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Lin, Y. W.

Liu, L.

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Liu, T.

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Malinovskii, V. K.

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

Mayer, B. W.

Melkonian, J. M.

Melkonian, J.-M.

Morandotti, R.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

Neely, T. W.

Nugent-Glandorf, L.

O’Connor, M. V.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

Oron, D.

Pasiskevicius, V.

Pelc, J. S.

Phillips, C. R.

Prabhudesai, V.

Pugachev, A. M.

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

Raybaut, M.

Reid, D. T.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

Shebanin, A. P.

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

Shepherd, D. P.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

Silberberg, Y.

Sowade, R.

Suchowski, H.

Surovtsev, N. V.

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

Tillman, K. A.

Vidal, F.

Walter, G.

Wang, X. B.

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

Watson, M. A.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

Wise, F. W.

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

Yaakobi, O.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[Crossref]

Appl. Phys. Lett. (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. D (1)

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[Crossref]

Laser Phys. (1)

T. Liu, L. Liu, X. B. Wang, X. Li, and J. Hou, “Cascaded synchronous terahertz optical parametric oscillations in a single MgO:PPLN crystal,” Laser Phys. 22, 678–683 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007).
[Crossref]

D. Descloux, C. Laporte, J. B. Dherbecourt, J. M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching,” Opt. Lett. 40, 280–283 (2015).
[Crossref]

K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003).
[Crossref]

D. Artigas and D. T. Reid, “Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals,” Opt. Lett. 27, 851–853 (2002).
[Crossref]

D. Descloux, C. Laporte, J.-B. Dherbecourt, J.-M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching: erratum,” Opt. Lett. 43, 494 (2018).
[Crossref]

T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012).
[Crossref]

D. Descloux, G. Walter, E. Cadiou, J.-B. Dherbecourt, G. Gorju, J.-M. Melkonian, M. Raybaut, C. Drag, and A. Godard, “Wide and fast dispersion tuning of a picosecond OPO based on aperiodic quasi-phase matching using an axially chirped volume Bragg grating,” Opt. Lett. 41, 4060–4063 (2016).
[Crossref]

Phys. Rev. A (1)

M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[Crossref]

Phys. Solid State (1)

N. V. Surovtsev, V. K. Malinovskii, A. M. Pugachev, and A. P. Shebanin, “The nature of low-frequency Raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. (a) QPM period as a function of the distance from the crystal center, for grating G4, for the parameters listed in Table 1. (b) Corresponding parametric gain spectrum with reduction of the ripples owing to apodization. For both figures, the dashed curve corresponds to a grating without apodization and with the same QPM chirp rate as grating G4 ($ {\mu _1} = {\mu_2} = 0 $).
Fig. 2.
Fig. 2. Schematic diagram of the OPA experimental setup.
Fig. 3.
Fig. 3. Parametric gain spectrum for QPM gratings G1–G5 (solid lines, numerical calculations; symbols, experimental measurements).
Fig. 4.
Fig. 4. Experimental setup of the picosecond SPOPO based on the chirped QPM APPLN crystal.
Fig. 5.
Fig. 5. OPO average power threshold as a function of the QPM chirp rate. The dashed–dotted line is a linear fit calculated without the highest chirp rate data point. The pump beam waist radius is $ 150\;\unicode{x00B5}\text{m} $ and $ {R_{\text{oc}}} = 90 \% $.
Fig. 6.
Fig. 6. Signal output power as a function of pump power for the SPOPO based on the 20-mm-long PPLN crystal and on gratings G1 and G4 of the 60-mm-long APPLN crystal. Symbols are experimental data points, and the lines are, respectively, a linear fit for QPM gratings G1 and G4, and a parabolic fit for the uniform QPM grating. The pump beam waist radius is $ 150\,\,\unicode{x00B5}\text{m} $, and $ {R_{\text{oc}}} = 90 \% $.
Fig. 7.
Fig. 7. Experimental signal photon conversion efficiency as a function of pump power for gratings G1 and G4 for both QPM chirp rate signs. The pump beam waist radius is $ 110\,\,\unicode{x00B5}\text{m} $, and $ {R_{\text{oc}}} = 90 \% $.
Fig. 8.
Fig. 8. Calculated signal photon conversion efficiency as a function of pump power for gratings G1 and G4 for both QPM chirp rate signs.
Fig. 9.
Fig. 9. Experimental signal spectrum, beam profile, and autocorrelation trace for several pumping rates for QPM grating G4 with a negative QPM chirp rate, a $ 150\;\unicode{x00B5}\text{m} $ pump waist, and $ {R_{\text{oc}}} = 90 \% $.
Fig. 10.
Fig. 10. Experimental signal spectrum, beam profile, and autocorrelation trace for several pumping rates for QPM grating G4 with a positive QPM chirp rate, a $ 150\;\unicode{x00B5}\text{m} $ pump waist, and $ {R_{\text{oc}}} = 90 \% $.
Fig. 11.
Fig. 11. Experimental pump spectrum after passing through the APPLN crystal (after mirror M3 in Fig. 4) for several pumping rates $ {P_{\text{pump}}}/{P_{\text{threshold}}} $ for QPM grating G6’ with a negative chirp rate, a pump waist radius of $ 110\;\unicode{x00B5}\text{m} $, and $ {R_{\text{oc}}} = 98 \% $ (solid lines, the OPO is oscillating; black dashed line, the OPO is intentionally misaligned to avoid oscillation, and the pump power is equivalent to a pumping rate of 4 times the oscillation threshold).
Fig. 12.
Fig. 12. Calculated normalized steady-state signal spectrum at crystal output, for grating $ {\text{G}6^\prime} $, for (a) negative and (b) positive QPM chirp rate, and corresponding spectrograms of the evolution of the signal spectrum, from which the incident signal spectrum has been subtracted, along the propagation of the pulse in the crystal, for (c) a negative and (d) a positive QPM chirp.
Fig. 13.
Fig. 13. Calculated normalized (a) output signal spectrum and (b) incident and output pump spectra. Normalized signal generation (signal intensity from which the initial value at $ z = 0 $ has been subtracted) at discrete (c) signal and (d) pump wavelengths as function of the position in the nonlinear crystal, for a pumping rate of 4 times the oscillation threshold. The discrete signal and pump wavelengths in (c) and (d) are indicated in their respective output spectrum in (a) and (b).
Fig. 14.
Fig. 14. Normalized incident pump spectrum (black) and calculated steady-state pump spectrum at crystal output (red), for grating G6’, for (a) a negative and (b) a positive QPM chirp rate, and corresponding spectrograms of the evolution of the pump spectrum along the propagation of the pulse in the crystal, for (c) a negative and (d) a positive QPM chirp rate.
Fig. 15.
Fig. 15. Position of the perfect phase matching point of the different parametric processes in the nonlinear crystal for grating G6’, for the DFG process (in green) with a 1064 nm pump wavelength, and the generation of the red and blue pump sideband via SFG. The subscripts refer to the discrete wavelengths defined in Fig. 13.
Fig. 16.
Fig. 16. Schematic diagram of the generation of the signal spectrum modulation and of the pump red sideband, in an aperiodic QPM crystal (with $ \kappa ^\prime \lt 0 $), through cascaded DFG/SFG processes. The blue, green, and red profiles, respectively, correspond to the pump, signal, and idler spectra. From (a)–(e), the spectra are presented for different QPM grating periods, and the likely parametric interaction for each period (black arrow).
Fig. 17.
Fig. 17. OPO output spectrum in signal wavelength range with grating $ \text{G}6^{\prime} $, for a negative QPM chirp rate, for low (2.2 W) and high (6.3 W) incident pump power. The spectral feature labeled ${\bf s}$ corresponds to the expected OPO signal spectrum. For a pump power of 2.7 W, a secondary peak, labeled ${\bf s}{^{\prime}}$, appears with a shift of $ 47\;{\text{cm}^{ - 1}} $. Above an input pump power of $ 3.8\,\text{W} $, a third peak, labeled ${\bf s}{^{\prime\prime}}$, appears with a shift of $ 103\;{\text{cm}^{ - 1}} $.
Fig. 18.
Fig. 18. OPO output spectra in the near-infrared in signal wavelength range (black) and in the mid-infrared in idler wavelength range (blue).
Fig. 19.
Fig. 19. Schemes of the various wave vector conservation conditions for the initial parametric interaction, the terahertz cascading parametric processes, and the mid-infrared parasitic difference frequency generation. The underlined frequencies are resonant in the OPO cavity.

Tables (1)

Tables Icon

Table 1. Parameters Used for Chirped QPM Gratings of the APPLN Crystal and Corresponding Calculated Parametric Gain Bandwidths at the Signal and Idler Wavelengths (FWHM)a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

κ = d K g ( z ) d z | z = L c / 2 ,
ln G c × Δ ω c / L c = π 4 ln G u × Δ ω u / L u ,
Δ ω c = κ δ v si | L c ,
1 δ v si = 1 v s 1 v i ,
K g ( z ) = 2 π Λ 0 + κ ( z L c 2 ) + μ 1 κ L c 2 ( 2 z L c 1 ) ν 1 + μ 2 κ L c 2 ( 2 z L c 1 ) ν 2 ,
Γ = exp ( 2 π γ 2 / κ ) ,
γ 2 = ω s ω i n s n i n p 2 d eff 2 ϵ 0 c 3 I p ,