Abstract

We generate a spin-polarized current in a hexagonal zigzag graphene nanoflake (hZGNF) by integrating the photovoltaic and spin-dependent transport effects. We consider three different hZGNF configurations and simulate their spin–photovoltaic properties using two probe models in the presence of ferromagnetic contacts as well as the magnetization of zigzag edges. Our results reveal acceptable spin-dependent quantum efficiency, full optical spin polarization, and good optically induced magnetoresistance up to 900%, which can be modified by adjusting the photon energy, by varying the configuration, and also by introducing monovacancy. Interestingly, switching the magnetization of ferromagnetic contacts can approximately invert the spin characteristic of the photocurrent, and so the sign of optical spin polarization. Our findings may provide an efficient way to enhance radiation-induced magnetoresistance in carbon-based molecular junctions.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency active wavefront manipulation of spin photonics based on a graphene metasurface

Xiangxing Bai, Linlong Tang, Wei Yao, Qing Zang, Jialu Li, Shuang Liu, Wenqiang Lu, Yang Liu, Xiudong Sun, and Yueguang Lu
Opt. Express 27(16) 22475-22484 (2019)

Copper oxide-modified graphene anode and its application in organic photovoltaic cells

Min Wang, Hongtao Yu, Xiaoqian Ma, Yao Yao, Liang Wang, Lihui Liu, Kun Cao, Shuli Liu, Chen Dong, Baomin Zhao, Chunyuan Song, Shufen Chen, and Wei Huang
Opt. Express 26(18) A769-A776 (2018)

Graphene-based functional materials for organic solar cells [Invited]

Zhe Pan, Huili Gu, Meng-Ting Wu, Yongxi Li, and Yu Chen
Opt. Mater. Express 2(6) 814-824 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription