S. M. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

G. S. Agarwal and S. M. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).

[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).

[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).

[Crossref]

C. Bai, B. P. Hou, D. G. Lai, and D. Wu, “Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir,” Phys. Rev. A 93, 043804 (2016).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).

[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).

[Crossref]

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “A dissipative quantum reservoir for microwave light using a mechanical oscillator,” Nat. Phys. 13, 787–793 (2017).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).

[Crossref]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

C. Jiang, H. X. Liu, Y. S. Cui, X. W. Li, G. B. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21, 12165–12173 (2013).

[Crossref]

B. Chen, C. Jiang, and K.-D. Zhu, “Slow light in a cavity optomechanical system with a Bose-Einstein condensate,” Phys. Rev. A 83, 055803 (2011).

[Crossref]

C. Jiang, Y. S. Cui, Z. Y. Zhai, H. L. Yu, X. W. Li, and G. B. Chen, “Phase-controlled amplification and slow light in a hybrid optomechanical system,” Opt. Express 27, 30473–30485 (2019).

[Crossref]

C. Jiang, H. X. Liu, Y. S. Cui, X. W. Li, G. B. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21, 12165–12173 (2013).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).

[Crossref]

C. Jiang, Y. S. Cui, Z. Y. Zhai, H. L. Yu, X. W. Li, and G. B. Chen, “Phase-controlled amplification and slow light in a hybrid optomechanical system,” Opt. Express 27, 30473–30485 (2019).

[Crossref]

C. Jiang, H. X. Liu, Y. S. Cui, X. W. Li, G. B. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21, 12165–12173 (2013).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).

[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nat. Commun. 6, 5850 (2015).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “A dissipative quantum reservoir for microwave light using a mechanical oscillator,” Nat. Phys. 13, 787–793 (2017).

[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

[Crossref]

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nat. Commun. 6, 5850 (2015).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).

[Crossref]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).

[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Optomechanically induced transparency in optomechanics with both linear and quadratic coupling,” Phys. Rev. A 98, 053802 (2018).

[Crossref]

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).

[Crossref]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).

[Crossref]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).

[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

C. Bai, B. P. Hou, D. G. Lai, and D. Wu, “Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir,” Phys. Rev. A 93, 043804 (2016).

[Crossref]

S. M. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).

[Crossref]

G. S. Agarwal and S. M. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).

[Crossref]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91, 043843 (2015).

[Crossref]

C. Jiang, Y. S. Cui, Z. Y. Zhai, H. L. Yu, X. W. Li, and G. B. Chen, “Phase-controlled amplification and slow light in a hybrid optomechanical system,” Opt. Express 27, 30473–30485 (2019).

[Crossref]

C. Jiang, H. X. Liu, Y. S. Cui, X. W. Li, G. B. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21, 12165–12173 (2013).

[Crossref]

B. Chen, C. Jiang, and K.-D. Zhu, “Slow light in a cavity optomechanical system with a Bose-Einstein condensate,” Phys. Rev. A 83, 055803 (2011).

[Crossref]

Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, “Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay,” New J. Phys. 18, 083034 (2016).

[Crossref]

T. X. Lu, Y. F. Jiao, H. L. Zhang, F. Saif, and H. Jing, “Selective and switchable optical amplification with mechanical driven oscillators,” Phys. Rev. A 100, 013813 (2019).

[Crossref]

Y.-F. Jiao, T.-X. Lu, and H. Jing, “Optomechanical second-order sidebands and group delays in a Kerr resonator,” Phys. Rev. A 97, 013843 (2018).

[Crossref]

T. X. Lu, Y. F. Jiao, H. L. Zhang, F. Saif, and H. Jing, “Selective and switchable optical amplification with mechanical driven oscillators,” Phys. Rev. A 100, 013813 (2019).

[Crossref]

H. Lü, C. Q. Wang, L. Yang, and H. Jing, “Optomechanically induced transparency at exceptional points,” Phys. Rev. Appl. 10, 014006 (2018).

[Crossref]

Y.-F. Jiao, T.-X. Lu, and H. Jing, “Optomechanical second-order sidebands and group delays in a Kerr resonator,” Phys. Rev. A 97, 013843 (2018).

[Crossref]

H. Lü, Y. Jiang, Y. Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photon. Res. 5, 367–371 (2017).

[Crossref]

Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, “Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay,” New J. Phys. 18, 083034 (2016).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).

[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).

[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).

[Crossref]

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “A dissipative quantum reservoir for microwave light using a mechanical oscillator,” Nat. Phys. 13, 787–793 (2017).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

C. Bai, B. P. Hou, D. G. Lai, and D. Wu, “Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir,” Phys. Rev. A 93, 043804 (2016).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

C. Jiang, Y. S. Cui, Z. Y. Zhai, H. L. Yu, X. W. Li, and G. B. Chen, “Phase-controlled amplification and slow light in a hybrid optomechanical system,” Opt. Express 27, 30473–30485 (2019).

[Crossref]

C. Jiang, H. X. Liu, Y. S. Cui, X. W. Li, G. B. Chen, and B. Chen, “Electromagnetically induced transparency and slow light in two-mode optomechanics,” Opt. Express 21, 12165–12173 (2013).

[Crossref]

Y. Li, Y. Y. Huang, X. Z. Zhang, and L. Tian, “Optical directional amplification in a three-mode optomechanical system,” Opt. Express 25, 18907–18916 (2017).

[Crossref]

Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, “Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay,” New J. Phys. 18, 083034 (2016).

[Crossref]

W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91, 043843 (2015).

[Crossref]

X. W. Xu and Y. Li, “Controllable optical output fields from an optomechanical system with mechanical driving,” Phys. Rev. A 92, 023855 (2015).

[Crossref]

H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, and X.-M. Lin, “Phonon blockade in a quadratically coupled optomechanical system,” Phys. Rev. A 96, 013861 (2017).

[Crossref]

J.-Q. Liao and F. Nori, “Photon blockade in quadratically coupled optomechanical systems,” Phys. Rev. A 88, 023853 (2013).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, and X.-M. Lin, “Phonon blockade in a quadratically coupled optomechanical system,” Phys. Rev. A 96, 013861 (2017).

[Crossref]

S. P. Liu, B. Liu, J. F. Wang, T. T. Sun, and W.-X. Yang, “Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system,” Phys. Rev. A 99, 033822 (2019).

[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

S. P. Liu, B. Liu, J. F. Wang, T. T. Sun, and W.-X. Yang, “Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system,” Phys. Rev. A 99, 033822 (2019).

[Crossref]

W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91, 043843 (2015).

[Crossref]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

T. X. Lu, Y. F. Jiao, H. L. Zhang, F. Saif, and H. Jing, “Selective and switchable optical amplification with mechanical driven oscillators,” Phys. Rev. A 100, 013813 (2019).

[Crossref]

Y.-F. Jiao, T.-X. Lu, and H. Jing, “Optomechanical second-order sidebands and group delays in a Kerr resonator,” Phys. Rev. A 97, 013843 (2018).

[Crossref]

H. Lü, C. Q. Wang, L. Yang, and H. Jing, “Optomechanically induced transparency at exceptional points,” Phys. Rev. Appl. 10, 014006 (2018).

[Crossref]

H. Lü, Y. Jiang, Y. Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photon. Res. 5, 367–371 (2017).

[Crossref]

Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, “Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay,” New J. Phys. 18, 083034 (2016).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).

[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001).

[Crossref]

H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, “Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions,” Sci. China: Phys., Mech. Astron. 58, 1100–1113 (2015).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).

[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).

[Crossref]

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).

[Crossref]

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).

[Crossref]

J.-Q. Liao and F. Nori, “Photon blockade in quadratically coupled optomechanical systems,” Phys. Rev. A 88, 023853 (2013).

[Crossref]

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “A dissipative quantum reservoir for microwave light using a mechanical oscillator,” Nat. Phys. 13, 787–793 (2017).

[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nat. Commun. 6, 5850 (2015).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

Y. Jiao, H. Lü, J. Qian, Y. Li, and H. Jing, “Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay,” New J. Phys. 18, 083034 (2016).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).

[Crossref]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

T. X. Lu, Y. F. Jiao, H. L. Zhang, F. Saif, and H. Jing, “Selective and switchable optical amplification with mechanical driven oscillators,” Phys. Rev. A 100, 013813 (2019).

[Crossref]

M. J. Akram, M. M. Khan, and F. Saif, “Tunable fast and slow light in a hybrid optomechanical system,” Phys. Rev. A 92, 023846 (2015).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, and X.-M. Lin, “Phonon blockade in a quadratically coupled optomechanical system,” Phys. Rev. A 96, 013861 (2017).

[Crossref]

H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, “Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions,” Sci. China: Phys., Mech. Astron. 58, 1100–1113 (2015).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).

[Crossref]

X.-Y. Wang, L.-G. Si, X.-H. Lu, and Y. Wu, “Generation and enhancement of sum sideband in a quadratically coupled optomechanical system with parametric interactions,” Opt. Express 27, 29297–29308 (2019).

[Crossref]

L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).

[Crossref]

X.-G. Zhan, L.-G. Si, A.-S. Zheng, and X. X. Yang, “Tunable slow light in a quadratically coupled optomechanical system,” J. Phys. B 46, 025501 (2013).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature 480, 351–354 (2011).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

D. B. Sohn, S. Kim, and G. Bahl, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).

[Crossref]

T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn, “Tunable cavity optomechanics with ultracold atoms,” Phys. Rev. Lett. 105, 133602 (2010).

[Crossref]

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).

[Crossref]

V. Singh, S. J. Bosman, B. H. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. A. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol 9, 820–824 (2014).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

S. P. Liu, B. Liu, J. F. Wang, T. T. Sun, and W.-X. Yang, “Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system,” Phys. Rev. A 99, 033822 (2019).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nat. Commun. 6, 5850 (2015).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

L. D. Tóth, N. R. Bernier, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, “A dissipative quantum reservoir for microwave light using a mechanical oscillator,” Nat. Phys. 13, 787–793 (2017).

[Crossref]

J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons,” Nat. Phys. 9, 712–716 (2013).

[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).

[Crossref]

R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, “Remote quantum entanglement between two micromechanical oscillators,” Nature 556, 473–477 (2018).

[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).

[Crossref]

H. Lü, C. Q. Wang, L. Yang, and H. Jing, “Optomechanically induced transparency at exceptional points,” Phys. Rev. Appl. 10, 014006 (2018).

[Crossref]

H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).

[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003).

[Crossref]

S. P. Liu, B. Liu, J. F. Wang, T. T. Sun, and W.-X. Yang, “Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system,” Phys. Rev. A 99, 033822 (2019).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

W. Z. Jia, L. F. Wei, Y. Li, and Y. X. Liu, “Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,” Phys. Rev. A 91, 043843 (2015).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).

[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Käastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).

[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” Nature 556, 478–482 (2018).

[Crossref]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006).

[Crossref]

C. Bai, B. P. Hou, D. G. Lai, and D. Wu, “Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir,” Phys. Rev. A 93, 043804 (2016).

[Crossref]

X.-Y. Wang, L.-G. Si, X.-H. Lu, and Y. Wu, “Generation and enhancement of sum sideband in a quadratically coupled optomechanical system with parametric interactions,” Opt. Express 27, 29297–29308 (2019).

[Crossref]

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).

[Crossref]

L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, “Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions,” Sci. China: Phys., Mech. Astron. 58, 1100–1113 (2015).

[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).

[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in ν-, Λ- and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).

[Crossref]

D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, and X.-M. Lin, “Phonon blockade in a quadratically coupled optomechanical system,” Phys. Rev. A 96, 013861 (2017).

[Crossref]

H. Xiong and Y. Wu, “Fundamentals and applications of optomechanically induced transparency,” Appl. Phys. Rev. 5, 031305 (2018).

[Crossref]

L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, “Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions,” Sci. China: Phys., Mech. Astron. 58, 1100–1113 (2015).

[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).

[Crossref]

X. W. Xu and Y. Li, “Controllable optical output fields from an optomechanical system with mechanical driving,” Phys. Rev. A 92, 023855 (2015).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).

[Crossref]

H. Lü, C. Q. Wang, L. Yang, and H. Jing, “Optomechanically induced transparency at exceptional points,” Phys. Rev. Appl. 10, 014006 (2018).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

S. P. Liu, B. Liu, J. F. Wang, T. T. Sun, and W.-X. Yang, “Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system,” Phys. Rev. A 99, 033822 (2019).

[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

H. Xiong, L. G. Si, X. Y. Lv, X. X. Yang, and Y. Wu, “Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions,” Sci. China: Phys., Mech. Astron. 58, 1100–1113 (2015).

[Crossref]

X.-G. Zhan, L.-G. Si, A.-S. Zheng, and X. X. Yang, “Tunable slow light in a quadratically coupled optomechanical system,” J. Phys. B 46, 025501 (2013).

[Crossref]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in ν-, Λ- and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).

[Crossref]

H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, and X.-M. Lin, “Phonon blockade in a quadratically coupled optomechanical system,” Phys. Rev. A 96, 013861 (2017).

[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Optomechanically induced transparency in optomechanics with both linear and quadratic coupling,” Phys. Rev. A 98, 053802 (2018).

[Crossref]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: propagation dynamics,” Phys. Rev. Lett. 74, 2447–2450 (1995).

[Crossref]

J. Y. Ma, C. You, L. G. Si, H. Xiong, J. H. Li, X. X. Yang, and Y. Wu, “Optomechanically induced transparency in the presence of an external time-harmonic-driving force,” Sci. Rep. 5, 11278 (2015).

[Crossref]

T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2013).

[Crossref]

D. Bothner, S. Yanai, A. Iniguez-Rabago, M. Yuan, Y. M. Blanter, and G. A. Steele, “Cavity electromechanics with parametric mechanical driving,” arXiv:1908.08496 (2019).

X.-G. Zhan, L.-G. Si, A.-S. Zheng, and X. X. Yang, “Tunable slow light in a quadratically coupled optomechanical system,” J. Phys. B 46, 025501 (2013).

[Crossref]

T. X. Lu, Y. F. Jiao, H. L. Zhang, F. Saif, and H. Jing, “Selective and switchable optical amplification with mechanical driven oscillators,” Phys. Rev. A 100, 013813 (2019).

[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Optomechanically induced transparency in optomechanics with both linear and quadratic coupling,” Phys. Rev. A 98, 053802 (2018).

[Crossref]

P. C. Ma, J. Q. Zhang, Y. Xiao, M. Feng, and Z. M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).

[Crossref]

H. Xiong, L. G. Si, A. S. Zheng, X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).

[Crossref]

X.-G. Zhan, L.-G. Si, A.-S. Zheng, and X. X. Yang, “Tunable slow light in a quadratically coupled optomechanical system,” J. Phys. B 46, 025501 (2013).

[Crossref]

F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys. 14, 123037 (2012).

[Crossref]

X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, “Optomechanically induced transparency in optomechanics with both linear and quadratic coupling,” Phys. Rev. A 98, 053802 (2018).

[Crossref]

B. Chen, C. Jiang, and K.-D. Zhu, “Slow light in a cavity optomechanical system with a Bose-Einstein condensate,” Phys. Rev. A 83, 055803 (2011).

[Crossref]

L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, “Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system,” Phys. Rev. A 95, 033803 (2017).

[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).

[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).

[Crossref]