Abstract

A theoretical treatment of transient grating diffraction is derived for gratings that are spatially nonuniform in the direction perpendicular to the sample surface. This treatment is readily generalized to any four-wave mixing experiment. Both reflection and transmission geometries of diffraction are examined for the standard transient grating case, in which both grating excitation beams are incident upon the same side of the sample For samples in which the grating amplitude perpendicular to the sample surface varies slowly relative to the optical wavelength, the reflection geometry is shown to probe only the surface or the interface, while the transmission geometry probes the bulk of the sample. An experimental example using four transient grating geometries (two reflection, two transmission) is shown to yield significantly different temporal responses, illustrating the nature of the theoretical predictions. The sample is a thin molecular crystal upon a substrate Both electronic excitations (excitons) and wave-guided acoustic modes are generated and probed Distinct signals are obtained from the bulk, the crystal–substrate interface, and the free-crystal face. Model calculations are presented that illuminate the behavior of the experimental example.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient analysis of four-grating copolarized four-wave mixing in saturable gain media with finite probe

K. S. Syed, G. J. Crofts, and M. J. Damzen
J. Opt. Soc. Am. B 13(9) 1892-1904 (1996)

Polarization dependence and selection rules of transient four-wave mixing in GaAs quantum-well excitons

Henry H. Yaffe, Yehiam Prior, J. P. Harbison, and L. T. Florez
J. Opt. Soc. Am. B 10(4) 578-583 (1993)

Optical heterodyne detection of laser-induced gratings

A. A. Maznev, K. A. Nelson, and J. A. Rogers
Opt. Lett. 23(16) 1319-1321 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription