Abstract

We demonstrate that various optical bottle beams can be directly generated from a tightly focused end-pumped Nd:YVO4 laser. By controlling the size of pump beam and intracavity aperture in a planoconcave cavity, we obtain well contrasting optical bottles with semiconfocal, 1/3-, and 1/5-degenerate cavity configurations. These beams result, respectively, from the superposition of the fundamental mode and the corresponding lowest degenerate transverse eigenmode, which is in-phase at their beam waists. Unlike that of our previous simulation model, this new observation is universal; it is suitable for any kind of gain media in tightly end-pumped lasers.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bottle beam from a bare laser for single-beam trapping

Ching-Hsu Chen, Po-Tse Tai, and Wen-Feng Hsieh
Appl. Opt. 43(32) 6001-6006 (2004)

Multibeam-waist modes in an end-pumped Nd:YVO4 laser

Ching-Hsu Chen, Po-Tse Tai, Wen-Feng Hsieh, and Ming-Dar Wei
J. Opt. Soc. Am. B 20(6) 1220-1226 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  2. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
    [Crossref]
  3. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
    [Crossref]
  4. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [Crossref] [PubMed]
  5. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [Crossref]
  6. D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
    [Crossref]
  7. T. Freegarde and K. Dholakia, “Cavity-enhanced optical bottle beam as a mechanical amplifier,” Phys. Rev. A 66, 013413 (2002).
    [Crossref]
  8. D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Opt. Lett. 29, 661–663 (2004).
    [Crossref] [PubMed]
  9. C. H. Chen, P. T. Tai, and W. F. Hsieh are preparing a manuscript to be called “Bottle beam from a bare laser for single-beam trapping.”
  10. Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
    [Crossref] [PubMed]
  11. A. E. Siegman, Laser (University Science Books, Sausalito, Calif., 1986), Chap. 19.
  12. C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, “The multi-beam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
    [Crossref]

2004 (2)

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Opt. Lett. 29, 661–663 (2004).
[Crossref] [PubMed]

2003 (2)

C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, “The multi-beam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
[Crossref]

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

2002 (1)

T. Freegarde and K. Dholakia, “Cavity-enhanced optical bottle beam as a mechanical amplifier,” Phys. Rev. A 66, 013413 (2002).
[Crossref]

2000 (2)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
[Crossref]

1999 (1)

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
[Crossref]

1996 (1)

1986 (1)

Arlt, J.

Ashkin, A.

Bjorkholm, J. E.

Bouma, B. E.

Chen, C. H.

C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, “The multi-beam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
[Crossref]

C. H. Chen, P. T. Tai, and W. F. Hsieh are preparing a manuscript to be called “Bottle beam from a bare laser for single-beam trapping.”

Chu, S.

Davidson, N.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
[Crossref]

Dholakia, K.

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

T. Freegarde and K. Dholakia, “Cavity-enhanced optical bottle beam as a mechanical amplifier,” Phys. Rev. A 66, 013413 (2002).
[Crossref]

Dziedzic, J. M.

Freegarde, T.

T. Freegarde and K. Dholakia, “Cavity-enhanced optical bottle beam as a mechanical amplifier,” Phys. Rev. A 66, 013413 (2002).
[Crossref]

Gahagan, K. T.

Grimm, R.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Hsieh, W. F.

C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, “The multi-beam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
[Crossref]

C. H. Chen, P. T. Tai, and W. F. Hsieh are preparing a manuscript to be called “Bottle beam from a bare laser for single-beam trapping.”

Ketterle, W.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
[Crossref]

Leanhardt, A. E.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

McGlin, D.

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Melville, H.

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
[Crossref]

Padgett, M. J.

Pasquini, T. A.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Pritchard, D. E.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Saba, M.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Schirotzek, A.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Shin, Y.

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Sibbett, W.

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Siegman, A. E.

A. E. Siegman, Laser (University Science Books, Sausalito, Calif., 1986), Chap. 19.

Spalding, G. C.

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Swartzlander, G. A.

Tai, P. T.

C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, “The multi-beam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
[Crossref]

C. H. Chen, P. T. Tai, and W. F. Hsieh are preparing a manuscript to be called “Bottle beam from a bare laser for single-beam trapping.”

Tearney, G. J.

Wei, M. D.

Weidemuller, M.

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Yelin, D.

Adv. At. Mol. Opt. Phys. (1)

R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. McGlin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (2)

T. Freegarde and K. Dholakia, “Cavity-enhanced optical bottle beam as a mechanical amplifier,” Phys. Rev. A 66, 013413 (2002).
[Crossref]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, 1750–1753 (1999).
[Crossref]

Phys. Rev. Lett. (1)

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, “Distillation of Bose-Einstein condensates in a double-well potential,” Phys. Rev. Lett. 92, 150401 (2004).
[Crossref] [PubMed]

Other (2)

A. E. Siegman, Laser (University Science Books, Sausalito, Calif., 1986), Chap. 19.

C. H. Chen, P. T. Tai, and W. F. Hsieh are preparing a manuscript to be called “Bottle beam from a bare laser for single-beam trapping.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Intensity patterns and their corresponding three-dimensional profiles. (a) Out-of-phase summing up LG00 and LG20 modes at beam waist, (b–d) in-phase adding LG00 and LG20, LG00 and LG30, as well as LG00 and LG50 modes, where W0 is the beam waist, and zR is the Rayleigh length.
Fig. 2.
Fig. 2. Radial intensity patterns of the optical bottle generated from a laser operated with the 1/4-degenerate cavity at various distances from the transform lens, which is indicated above the photographs, where zR is the Rayleigh range.
Fig. 3.
Fig. 3. Calculated radial intensity distributions and the experimentally observed beam profiles. The calculated transverse profile of LG00+LG20 is at z=zR and of LG00+LG30 at z=zR/√3 that correspond to the photographs taken at 1/4 and 1/3 degeneracy, respectively.
Fig. 4.
Fig. 4. Depth of optical bottle versus different pumping size and corresponding calculated profiles at 1/5 degeneracy. The CCD images in (a–c) are the beam patterns when the laser is operated with pump size of 30 μm, 20 μm, and 15 μm, respectively. (d) The calculated profile of LG00+LG20 is at z=0.324 zR.

Metrics