Abstract

The temperature dependence of a Faraday rotator mirror (FRM) used in a reflective erbium doped fiber amplifier(R-EDFA) is reported in this paper. The influence of this dependence on the polarization state (PS) of amplified optical signals is also discussed.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity optical fiber current sensor based on polarization diversity and a Faraday rotation mirror cavity

Hongying Zhang, Yongkang Dong, Jesse Leeson, Liang Chen, and Xiaoyi Bao
Appl. Opt. 50(6) 924-929 (2011)

Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber

Young-Geun Han, Thi Van Anh Tran, and Sang Bae Lee
Opt. Lett. 31(6) 697-699 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Goving P. Agrawal, Fiber-Optic Communication Systems(Third Edition), Ed. (Wiley & Sons, New York, 2002).
    [Crossref]
  2. J.M. López-Higuera, Handbook of Optical Fiber sensing Technology, Ed. (Wiley & Sons, Chinchester, 2002).
  3. J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
    [Crossref]
  4. S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
    [Crossref]
  5. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on retracing beam,” Opt. Commun,  72, 341–344 (1989).
    [Crossref]
  6. Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
    [Crossref]
  7. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503, (1941).
    [Crossref]
  8. M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
    [Crossref]
  9. M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).
  10. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

2004 (2)

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

2003 (1)

J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
[Crossref]

1996 (1)

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
[Crossref]

1989 (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on retracing beam,” Opt. Commun,  72, 341–344 (1989).
[Crossref]

1987 (1)

Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
[Crossref]

1941 (1)

Agrawal, Goving P.

Goving P. Agrawal, Fiber-Optic Communication Systems(Third Edition), Ed. (Wiley & Sons, New York, 2002).
[Crossref]

Bayart, D.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

Bigo, S.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

Chen, C.C

J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
[Crossref]

Chi, S.

J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
[Crossref]

Conde, O. M.

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

Cubillas, A. M.

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

Desthieux, B.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

Desurvire, E.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

Dung, J.C.

J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
[Crossref]

Hibiya, T.

Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
[Crossref]

Honda, Y.

Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
[Crossref]

Hotate, K.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
[Crossref]

Ito, M.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
[Crossref]

Jauregui, C.

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

Jones, R. C.

López-Higuera, J.M.

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

J.M. López-Higuera, Handbook of Optical Fiber sensing Technology, Ed. (Wiley & Sons, Chinchester, 2002).

Madruga, F. J.

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

Martinelli, M.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on retracing beam,” Opt. Commun,  72, 341–344 (1989).
[Crossref]

Quintela, M. A.

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

Shiroki, K.

Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
[Crossref]

Yamashita, S.

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
[Crossref]

IEEE Trans. J. Magnet. Jpn. (1)

Y. Honda, T. Hibiya, and K. Shiroki, “DyBi garnet films with improved temperature dependence of Faraday rotation,” IEEE Trans. J. Magnet. Jpn. TJMJ-2, 142–144 (1987).
[Crossref]

in Second European Workshop on Optical Fibre Sensors, Proc. SPIE (1)

M. A. Quintela, C. Jauregui, O. M. Conde, A. M. Cubillas, and J.M. López-Higuera, “Optical signal polarization state instability on erbium doped fibers,” in Second European Workshop on Optical Fibre Sensors, Proc. SPIE 5502, 544–547 (2004).

J. Lightwave Technol. (1)

S. Yamashita, K. Hotate, and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator a faraday rotator mirror,” J. Lightwave Technol.,  13, 385–389 (1996).
[Crossref]

J. Opt. Soc. Am. (1)

Microwave Opt. Technol. Lett. (1)

M. A. Quintela, C. Jauregui, F. J. Madruga, and J.M. López-Higuera, “Experimental characterization of light polarization in active erbium doped fiber,” Microwave Opt. Technol. Lett.,  42, 395–397 (2004).
[Crossref]

Opt. Commun (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on retracing beam,” Opt. Commun,  72, 341–344 (1989).
[Crossref]

Opt. Commun. (1)

J.C. Dung, S. Chi, and C.C Chen, “Characteristics of the erbium doped fiber amplifier with polarization mode dispersion compensation,” Opt. Commun.,  222, 207–212 (2003).
[Crossref]

Other (3)

Goving P. Agrawal, Fiber-Optic Communication Systems(Third Edition), Ed. (Wiley & Sons, New York, 2002).
[Crossref]

J.M. López-Higuera, Handbook of Optical Fiber sensing Technology, Ed. (Wiley & Sons, Chinchester, 2002).

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers (Device and system developments), Ed. (Wiley & Sons, New York, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. General measurement set-up used in this research work.
Fig. 2.
Fig. 2. Minimum extinction ratio for two FRM’s: YIG(solid blue line) and BIG (dotted red line) as a function of the temperature deviation from the one at which the Faraday rotator was adjusted to 45°.
Fig. 3.
Fig. 3. Evolution of the PS of the amplified signal for a FRM temperature of 30°C (blue surface) and for a FRM temperature of 65°C (red surface). S is the area drawn on the Poincaré sphere by the changing PS in 30 seconds.
Fig. 4.
Fig. 4. PS variance as a function of FRM temperature. This PS variance quantify the change of the PS of the output optical signal.
Fig. 5.
Fig. 5. Evolution of the PS of the amplified signal with perturbations applied to the EDF-coil: a) at a FRM temperature of 30°C, b) at a FRM temperature of 65°C.
Fig. 6.
Fig. 6. (a) PS variance as a function of FRM temperature when the EDF was perturbed. (b) Illustration of the EDF coil deformation mechanism used to induce linear birefringence changes

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T F = g [ a b b * a * ]
T B = g [ a b * b a * ]
T FRM = γ [ sin 2 Δ ϑ cos 2 Δ ϑ cos 2 Δ ϑ sin 2 Δ ϑ ]
T 12 = γ c [ 0 β * β 0 ]
T 23 = γ c [ β * 0 0 β ]
T R _ EDFA = T 23 · T B · T FRM · T F · T 12
T R _ EDFA = g 2 γ γ c 2 cos ( 2 Δ ϑ ) T U + g 2 γ γ c 2 sin ( 2 Δ ϑ ) T M
T U = [ 1 0 0 1 ]
T M = [ p q q p ]
r = E E cos ( 2 Δ ϑ ) + u sin ( 2 Δ ϑ ) 2 v sin ( 2 Δ ϑ ) 2
u = ( T M E · E )
v = ( T M E · E )
r min = 1 [ tan ( 2 Δ ϑ ) ] 2
σ AZI 2 = 1 N · i = 1 N ( x i η AZI ) 2
σ ELLIP 2 = 1 N · i = 1 N ( y i η ELLIP ) 2

Metrics